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Forty years ago, Grothendieck formulated the general program of Classifier Toposes, and his

students developed and applied them to analytic spaces and to other fields. The fundamental

results of that program have been often helpful in understanding a particular topos, to make

explicit a theory that it classifies. But there are several open problems of a basic nature that

still need to be clarified.

Any U -Topos E can be described or constructed by any one of several methods; in

addition to the geometrical methods, there is a logical one, which in turn gives unexpected

geometric significance to general logical theories; consider a kind of T of structure that can

be interpreted in any U -Topos (like the structure of group or poset) and such that for any

morphism f : E ′ → E of U -Toposes and for any structure A of kind T in E , f ∗A is also a

structure of kind T in E ′. (Here f ∗ is any left adjoint that preserves finite limits). Often

there is a U -Topos U(T) containing a T-structure A0 with the universal property that for

any T-structure A in any U -Topos E there is an essentially unique morphism

φ : E → U(T) for which φ∗A0 = A.

The strong restriction on the kind of structure amounts roughly to ‘being definable in terms

of colimits and finite limits’, as could be guessed from the kind of condition on the test

morphisms f , but the actual result is part of a complex of completeness theorems. For

common shapes T of structure, the classifier toposes U(T) turn out simply to consist of all
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presheaves in U on some small U -category C: for example, the classifier for mere unstructured

objects turns out to consist of U -functors on U1, the full category of finite U -sets, while

U -functors on Uop
1 instead classify Boolean algebras in any E ; the topos of simplicial U -sets

(defined in 1950 by Eilenberg & Zilber, and massively applied still today in homotopy theory)

classifies total orders with distinct end points.

Grothendieck was able ‘without logic’ to apply these ideas to hundreds of examples, in

the sense that for each kind of structure that came up, he was able to discern whether

it was expressible by colimits and finite limits, without going through the reduction of

the description of such structures to relational systems and the reduction of coverings to

disjunctive/existential axioms. The role of specified coverings (Grothendieck ‘topologies’)

becomes especially relevant for those toposes which are not of the form ‘all presheaves’, but

expressible only as subtoposes of such, (because of insufficiency of projectives).

There is of course a huge amount of inter-definability in the sense that C-shaped structures

restricted by certain disjunctive/existential conditions J may turn out to be equivalent (in

all U -toposes even) to C′-shaped structures restricted by J ′.

However, judiciously-chosen presentations by such a pair C, J , are often indispensable

in calculating examples. Moreover, description of a structure as a system of maps (sometimes

mathematically the most direct) can always be reformulated in a standard way as a description

in terms of a system of subobjects (‘relational system’) and thus a variant of the first order

theories of predicate logic can be applied as a powerful technology for manipulating such

presentations. The variant (called ‘positive logic’, ‘geometric logic’, ‘dynamical logic’ by

different authors) is a system that is actually often used in traditional model theory without

giving it the status (which would seem appropriate in view of the present considerations)

of ‘the basic’ logic: There is in general no implication operator definable on formulas, nor

universal quantification, so instead of a class of theorems, there is a class of pairs of formulas,

the first of which entails the second, and these pairs of formulas, rather than being restricted

to sentences, have free variables, (but the same variables in each of the pair). Existential
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quantification (characterized in 1963 as a left adjoint) does apply to formulas; moreover,

the formulas with any given free variables, are closed under disjunction, conjunction, and

include special formulas called true, false.

In an interpretation, entailment corresponds to inclusion between subobjects of a given

object. Even though formulas in general do not have negations, we can assert that a given

formula F is actually false, i.e. denotes the empty subobject, by simply requiring that

〈F, false〉 is an entailment pair. To present every subtopos of a given topos may require

infinite disjunctions (though not infinite conjunctions); of course, only when finite coverings

suffice for T, are we guaranteed ‘completeness’ in the sense that there are enough T-structures

in U itself.

The restriction to positive logic is appropriate because even though negation, universal

quantification, and implication, do indeed have unique interpretations in any fixed topos E ,

they are not preserved by the appropriate changes f ∗ of topos. Of course, if one is only

interested in structures valued in Boolean toposes (such as Boolean-valued models of U)

positivity is no real restriction, because any occurrence of a negated formula ¬F in an axiom

can be replaced by a new atomic formula G and the two axioms

F ∧G = false, F ∨G = true,

adjoined. (That procedure might change the natural notion of morphism of models.) In the

Stone space of a Boolean algebra, not every open set is clopen; this exemplifies the fact that

the classifying topos of a Boolean theory is typically not itself Boolean.

Many thanks to Francisco Marmolejo, for his lightening speed in reformatting Bill’s Essay.
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