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I
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Mathematics

June 14, 1989

Why must we study the foundations of Mathematics?

Why must we study the history of Mathematics?

According to my interpretation we must study the history of Mathematics

in order to arrive at the foundations of mathematics, in order to discover the

laws of the development of scientific thought, objective as well as subjective.

Why must we know these laws?

Above all to arrive at the position from which we can teach these laws.

And why teach them?

In order to provide an explicit assistance to the Learning, Development and

Utilisation of mathematics itself, that is, the science of space and quantity.

There is however another conception, according to which one studies the

history of mathematics in order to demonstrate, let us say, God talked with

Plato and Plato somehow talked to von Neumann and the great mass of

mathematicians (those who actually develop and utilize mathematics) have

nothing else to do but to deduce consequences from the axioms received in

that way from von Neumann, and in the last analysis from God.
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It seems that every true advance in the search for the laws of the development

of the laws of mathematical thought gives a great contribution on the one

hand, but on the other hand can be exploited by the second-mentioned line

in the following way:

There is first a period of open resistance against the new development, and

against its content which start to make clear that everyone could participate

in the developments and utilisations, hence in particular, to learn and not to

remain a slave who can only do certain calculations and mechanically deduce

certain consequences from axioms which arrived from “somewhere else”.

After a period of that kind of open resistance it becomes too difficult

to maintain that point of view and one passes from rightist positions to

an “ultra-left” position. That “ultra-left” position has at bottom the same

purpose: they pretend to accept the new results and they say: “but why

don’t we accept even more; we can do everything, right away!” which

means that instead of studying the results of the first line, in a serious way

(which of course would involve effort), one should introduce a completely

“new” and “revolutionary” system, as Dewey, for example, in 1919 in China

preached to the Chinese teachers that each student should develop “his

own” system, that one should not teach new science, i.e. the new valid

knowledge which was found by means of investigation and study, instead

that it would be “more important” that every child should develop his own

system without study, because to force him to study would be authoritarian.

In this sense the “ultra-left” line of Dewey is in substance a way to promote

the avoidance of study, even though it pretends to be an acceptance of the
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new and recent results. In the end the desired result is that the students see

that these “revolutionary” systems developed without serious study do not

serve and hence from the resulting insecurity, return to acceptance of the old

rightist line. This type of movement one also finds in the history of modern

mathematics.

Five years ago I wanted to give a course in Set Theory. The set theorists

were strongly opposed, however the greatest among them, that is John

Myhill, instead supported my attempt. On the first day of the course I tried

to explain the invariant content of the category of sets of which I had an

axiomatic description, but wanted to give an ideological vision of what could

be the significance of the objects of this category - nothing more or less.

So I explained, using the expression “abstract set” - a set which contains

certain points which are deprived of content, and a set itself deprived of

any structure except the fact that two points may be equal or unequal - .

Myhill (who unfortunately is now dead) came to the first days of the course,

heard this description and said to me: “I heard this somewhere before”.

“Where?” “In Cantor”. He brought me his copy of Cantor’s works with a

note saying: “see page 283 where Cantor speaks of “. . . lauter Einsen”. (This

is a somewhat strange expression in German, because “eins” means “one”

yet it is pluralized and nominalized.) In fact, studying these pages, one sees

that the set-theorists of this century have forgotten an important component

of what Cantor himself rather clearly explained about the basic conceptions

of set theory. Cantor speaks on the one hand of “Mengen” and on the other

hand of “Kardinalen”. “Mengen” is normally translated as “sets”, and in

every book on set-theory they speak of “cardinals”, but their “cardinals” are
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completely different from those described by Cantor himself.

How did things arrive to this point?

Perhaps it’s not important?

One would think, in studying the history of set-theory, that it would be

important; it would seem that in a book dedicated to the study of Cantor

and to his set-theory. (In a recent book written by a student of John Bell in

England, entitled: Cantor, the theory of sets and the limitation of size, one

does not speak of Cantor’s “Mengen”, nor even of “Cardinals” in the sense

of Cantor.)

Cantor himself, in an article summarizing his development of set-theory,

speaks of “Mengen” and of the passage from them to “Kardinalen”. Myhill

found that this description of “Kardinalen” by Cantor and my description

of abstract sets were essentially the same. “Mengen” as such are not treated

explicitly in any way in the books on set-theory of this century. They must,

of course, in some way be treated in order to pretend to have any relation

at all with mathematics, but as theoretical objects in the manner of Cantor

they are not dealt with.

An excuse for this omission could be, as we have already found in other

examples of the works of great mathematicians of the last century, that the

editors themselves of the collected works of great men, have a great influence

in the sense that any scholar desirous of understanding the work of the great

one, knowing that it is difficult, naturally goes to read the comments of these

editors “who must know”. The need for a guide always exists and it is they
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who have provided us with this guidance. The editor of the works of Cantor

writes that that part is inconsistent, even if Cantor is great, and it cannot be

made consistent and that in any case it is more important to pass immediately

to the arithmetic of cardinals, cardinals in the sense of this century. More

precisely, the editor says that this attempt to explain cardinals as the result

of a process of abstraction involving the “lauter Einsen” (which I will return

to explain more fully in a moment) was “not a happy one”, because these

“Einsen” elements must be different from one another, but how can they

be different if they have no distinguishing properties? This contradiction,

which is really a contradiction in a productive sense as I will demonstrate,

led the editor to say that the whole concept is inconsistent and hence that

one cannot speak of cardinality in this manner and, therefore, that it would

not be possible to move forward to interesting cardinality calculations even

though Cantor himself did exactly that.

Thus, it seems, one must begin again from the beginning. One must study

all the mathematicians of the past century, work and study to find the core

content, without being prejudiced by the common opinions of the editors of

collected works and others during the period after 1894.

One knows that the concept of equicardinality of “Mengen” is somehow

concerned with a kind of isomorphism which in Cantor is called “Mächtigkeit”,

that is, two “Mengen” are equally potent if there exists a bijection between

them. But a very interesting point which emerges from reading the work

of Cantor is that he himself cites the origin of this word “Mächtigkeit” in

the work of the famous Swiss geometer Jakob Steiner, who apparently used
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this word to signify isomorphism in a different category, in fact the category

of algebraic spaces, in his work on conic sections (1850), where equivalent

potency was used to explain that the ellipse is not equivalent to the parabola,

nor the parabola to the hyperbola, in an intrinsic geometrical matter. These

are all objects in one simple category in which there are many different

ellipses, many different hyperbolas, but there is a concept of isomorphism of

which the usual invariants exemplify invariants of isomorphisms. According

to Cantor himself, he took this concept of isomorphism from this geometric

context and arrived at his concept of isomorphism, naturally in a more

abstract context. Also this fact is not to be found in any book that I

have seen (although it is emphasized in a recent paper of Colin McLarty

who noticed it independently from me). Naturally, here one can say that

in embryonic form one finds already the concept of category, because in the

analogy between algebraic spaces and abstract sets there is already implicitly

a unifying concept. Cantor himself says that his concept of Mächtigkeit is

different yet similar to that of Steiner. Therefore one can speculate that if

the set-theorists had only studied Cantor with more seriousness, they would

have discovered the theory of categories 50 years before Eilenberg and Mac

Lane. But the “foundational” culture has somehow blocked even the great

Swiss set-theorists who are also fond supporters of Steiner, from noticing the

significance of this connection.

The third example of a mysterious fact we noticed in reading the works

of Cantor is Meta-mathematics.

What is Meta-mathematics?
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The common opinion, and this common opinion has been supported by

Kleene’s book which is precisely about meta-mathematics and by various

encyclopedia articles, is that Hilbert somehow started to talk of meta-mathematics

around 1900. However, already in 1883 Cantor spoke of meta-mathematics

and indeed not in a favorable sense. He speaks instead of a particular

anti-mathematical current of positivists which sought to put in doubt the

general validity of mathematical proofs and mathematical truth. Unfortunately

he does not specifically name the persons involved. But he does refer to this

as a group of sophists who are attempting to destroy the general faith in

mathematics and says that they use the slogan “meta-mathematics” themselves

to describe their tendency. One can speculate as a problem for further

detailed historical research that Cantor’s own later retreat into the madness

of objective idealism was in part a reaction to this subjective idealist attack

on his beloved science.

Let us now return to a more precise description of what are these “Mengen”

and “Kardinalen”:

The citation of Steiner demonstrates to me that Cantor must have studied

the work of Steiner, for I myself had to read many pages of geometry in

Steiner’s book before I could find the word “Mächtigkeit”. We know, in fact,

that Cantor worked first in the theory of numbers, then on the theory of

Fourier series, particularly with respect to the sets of convergence and of

uniqueness of such series and then arrived at the necessity to study sets in

a general manner from these examples and then, finally, at the necessity to

study the cardinality of these sets as a kind of first invariant of a problem.
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Thus a “Menge” has indeed an ensemble of points, but more than that, also

is cohesive and variable, a feature which the abstract sets do not have, except

in a degenerate way. Today one habitually speaks of “topology”, for example

to indicate a cohesive structure which a line has (a line on which might be

defined a function which might have a Fourier series, etc). However, we think

that, yes, there is a topology in the usual sense, but also many other similar

structures which might be better adapted to particular problems. One must

study not only these particular technically defined structures, but one must

also have a general conception of spaces with cohesion. I think that Cantor

probably also thought in this way. Without entering into the acceptance of

a particular definition of what cohesion might consist of, we can accept in

general the existence of spaces with cohesion. Naturally to make a detailed

analysis, we need eventually to find appropriate, detailed definitions, but for

the purpose of a general analysis one can also treat these objects in a general

way.

This cohesion of a topological type we may refer to as an objective cohesion;

on the other hand there is also cohesion of a subjective type, i.e. we come to

know these points in a certain way (perhaps they are the values of a particular

recursive function), that is, in my subjectivity, in my knowledge of a certain

“Menge”, I may come to know a certain point before I come to know another

one. The succession of the appearance of the points usually does not have an

objective mathematical significance, but nonetheless may have an interest in

certain connections, having to do, for example, with methods of calculation.

This too is a type of cohesiveness. Thus a recursive set is traced by various

threads given by particular recursive functions and this too gives it a kind of

10



cohesiveness which by contrast with the other we might call subjective. Both

of these types of cohesiveness were recognized by Cantor. This is why Cantor

used a double bar to indicate the double abstraction which in general may

be involved in passing from a cohesive Menge to its associated Kardinale.

Let us suppose thatM is a particular category of Mengen, for example the

category of topological spaces in one sense, the category of topological spaces

in another sense, the category of recursive spaces, one or another category of

combinatorial spaces, etc. Cantor says that we can take the pure set of points

of any such space, thus arriving at a cardinal. A contemporary illustration

of this process might be to depart from a color television picture with subtle

contrast of color and detail provided by highly advanced technology. But

then we can turn down the color knob and turn up the contrast knob until

nothing remains but stark white dots on a black background with even, we

may imagine, the outlines of figures suppressed. The picture with all its

beautiful colors is a “Menge”; but in order to concentrate on the study of

a certain superficial (but necessary) aspect, one may consider that bag of

points obtained in this way. With this process of abstraction one forgets

temporarily all the beautiful particularities, in order to concentrate only on

the points now deprived of qualities, but still equal in their numerosity to

those of the colored picture. This seems to be also a Menge, but a Menge of

a degenerate sort. That is, we may consider that every cardinal gives rise to

a Menge of a type called discrete and that in fact we have a pair of adjoint
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functors

M

K

pointsdiscrete a
K points(M)

discrete(K) M

discrete(points(M)) M

Thus a map of abstract sets from a cardinal K to the points of a Menge

M is a map of abstract sets, that is, a map of a completely general kind

with no condition of “continuity” or preservation of cohesiveness, but to give

such, is equivalent to giving a continuous map from discrete(K) to M . The

continuous maps in the other direction are by no means arbitrary for most

M ; for example, there will be no non-constant M-maps M → discrete(2)

if M is connected; in fact, for many M the foregoing clause serves well as

a definition of which objects M of M are to be considered as connected,1

for the morphisms of M must preserve the cohesion of which M may have

much but of which discrete(2) has none; thus a non-constant map of the kind

indicated is only possible if there is a break in the cohesiveness of M . As

usual with adjoints, taking the case where K is points(M) and taking the

identity map in K we obtain a canonical map inM from discrete(points(M))

to M itself which may be considered as the best approximation we can make

1This definition of connectedness is correct not only because it leads to useful technical
consequences, but more basically, because it corresponds to an objective concept: a
“Menge” has cohesiveness in general, but might in particular have two parts, each cohesive
in itself, but with no cohesiveness “between” the two parts in question; hence an M-map
would exist preserving all the coherence that there is to preserve, but mapping the two
parts to the respective points of the space discrete(2) whose cohesion is nil.
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“from the left” to M knowing only its cardinality.

But the points functor has also a right adjoint, which is sometimes called

codiscrete or chaotic. The chaotic space determined by a cardinal is usually

completely different from the discrete space determined by the same cardinal,

so that, for example, all M-maps chaotic(K1) → discrete(K2) are constant,

whereas theM-maps in the other direction are (for two reasons) as many as

the arbitrary K-maps K2 → K1

M

K

p
o
i
n
t
s

discrete chaotica a
M chaotic(K)

points(M) K.

Here again the horizontal bar is an abbreviation to indicate that there is

given a natural bijection between the M-maps with domain and codomain

as indicated above the bar and the K-maps as indicated below the bar.

In general a discrete space is completely deficient in its cohesiveness so

that each point remains forever itself and no motion is possible, i.e. no map

from a connected space to it can pass through two distinct points, whereas by

contrast a chaotic space is so excessive in its cohesiveness that any point can

be moved to any other point without any “effort”, i.e. without any regard to

the nature of the space-“time” which might parameterize such motion. Also

this excessive cohesion which a chaotic space has, is completely determined

by its cardinality. Usually the chaotic spaces are in a trivial way connected,

both because one can pass continuously (i.e. by a notion parameterized by
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any connected parameterizer one wishes, provided it has at least two points)

between any two points, as well as because the maps from it to a discrete

space are all constant as in the formal definition offered above.

There are in fact interesting categories of Mengen (combinatorial and/or

bornological in nature) which are in a certain sense2 generated by the chaotic

objects only, even though having objects with arbitrarily complicated higher

connectivity properties. However, these are extreme special cases and we

M

K

•
1

•
0

•
1

• 0

discrete chaotic

•
•

•

•

disc(M)
M

chaot(M)

pts(M)

The two composite functors are both isomorphic to the identity of K:

discrete·points ∼= 1K ∼= chaotic·points.

want to continue for a while to discuss the more general situation in which

2That is, for such a special M, knowing all about the special maps chaotic(K) → M
completely determines the arbitrary object M - such have been studied for over 50 years
by topologists under the name “Simplicial Complexes”.
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we consider a very arbitrary category of Mengen, in which there are the

two opposed sub-categories of discrete and codiscrete objects, each in itself

identical with a category of Kardinalen, that is, if to the canonical map

disc(pts(M)) M we apply the functor “points”, we obtain an isomorphism

of cardinals

points(discrete(points(M))) points(M),∼

and similarly with the canonical map

M chaotic(points(M))

applying the functor “points” we obtain an isomorphism of cardinals

points(M) points(chaotic(points(M)))∼

even though the two original canonical maps themselves are usually very far

from being isomorphisms of Mengen. Thus the contradiction objectified in

the system of adjoint functors explains the “inconsistency” which blocked the

progress of Zermelo (Cantor’s editor) from understanding this foundational

question, for indeed the points of a cardinal are definitely distinct as is shown

by how the discrete spaces relate to all the other spaces inM. On the other

hand its points are completely indistinguishable as is shown by the manner

in which the corresponding chaotic space behaves in relation to M.

The “inconsistency” of diversity versus indistinguishability, of having a

definite number of points, but of these points being indistinguishable by

any property, seem to Zermelo so antagonistic a contradiction that nothing
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coherent could be done. But the explicit use of adjoint functors between

categories in this configuration lays everything out so that the productive

nature of the contradiction can become clear to everyone. The adjunction

map

discrete(points(M)) M

is monomorphic so that the points remain distinct as they were in M itself.

On the other hand, in chaotic(points(M)) not only are the points “equal” in

the philosophical sense that there are no distinguishing properties, but even

in the stronger sense that one can pass from one to the other along motions

or variations parameterized by any desired connected space.

Unfortunately, we have been blocked for almost a century from understanding

clearly and developing further these simple but powerful modes of thought,

because most of the set theorists have followed the guide as exemplified by the

editor of the collected works of Cantor. The Frege . . . von Neuman concept

of “cardinal” is too abstract because it can no longer carry the all-important

notion of map and hence does not give rise to a category K.

discrete·points ∼= 1K ∼= chaotic·points

discrete(points(M)) M

points(discrete(points(M))) points(M)

canon

∼

M chaotic(points(M))

points(M) points(chaotic(points((M))))

canon

∼

The question from the audience from a geometer who objects that he
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does not feel he needs to know the axioms of set theory because all these fine

distinctions made by the foundationalists do not seem to have any bearing on

his geometry. The speaker responds: “but that is exactly what I am trying

to say!”

What are these so-called foundations of mathematics?

As I said in the beginning: the true foundations must serve mathematics,

must provide a guide for finding appropriate conjectures and a guide for

finding proofs of these conjectures. If it does not serve this end, it is not

a foundation. Cantor made an advance towards such foundations and also

Boole made an advance. But then someone applied an operation of the

following sort: One takes these advances and declares them to be one’s

particular isolated speciality or expertise, then one arranges that one does not

teach them, or one teaches that these are the only advances that exist or are

possible, that they constitute The Foundations and you must believe that

without them you cannot do your analysis and your geometry. To reinforce

this belief one choses a notation and a mode for formalizing the concepts

which is as different as possible from that used in everyday practice of

mathematics, so that without a specialized study (into which you really have

no wish to enter) you cannot understand it. Thus, briefly, the foundationalists

direct the world of mathematics, but you poor devil can never understand

their foundations. Naturally, such a foundationalist never enters into the

study of newer developments in mathematics itself, because he knows already

all that is possible and such “new” developments could only be some clever

definition within their system or some very clever demonstration of a difficult
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theorem which is, after all, in the final analysis, merely a previously unnoticed

consequence of their already known axioms.

That which I have just described we may succinctly refer to as Pure

Foundations. But it should be immediately clear that from the point of view

of mathematics
Pure Foundations

Non -Foundation

∼=

As an example of the slightness of the connection between the purified

foundation and the science of mathematics it suffices to consider the so-called

definition of the “reals” as the power set of the natural numbers which they

attempt to impose on the geometers and analysts for whom the real is a line

and a system of continuos quantities.

Here we are attempting to use the expression “pure” and “non” in a

consistent way to signify the philosophical relation known as unity and identity

of opposites. For example, that which we have already discussed in terms of

discrete and chaotic, might also be expressed as

M

K

non-cohesion pure cohesion

= cohesion

a a

since these two, while opposed as sub-categories as they are united in M,

are in themselves both identical with the category K.
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To illustrate in an extremely elementary example how the oppositeness

of united identicals can be precisely expressed by adjointness, let us consider

the problem of addition, as it is partly taught in elementary school. Every

bookkeeper knows how to do a sum such as 17 + 8, one does (perhaps

mentally) the following steps:

17 + 8 = (10 + 7) + 8

= 10 + (7 + 8)

= 10 + [7 + (3 + 5)]

= 10 + [(7 + 3) + 5]

= (10 + 10) + 5

= 20 + 5

= 25.

Here the seven steps can be explicitly justified either by the associative law

or by the convention of positional notation, except for the crucial third step.

Foundations should also provide an explicitly teachable account of the

justification of this third step which is sometimes described in an imprecise

way as “striving for tens”. Failure to arrive on your own at some formulation

of the principle may contribute to the subjective conclusion that “I’m not

gifted for mathematics” and hence objectively to the continuation of the

frozen division of labor.

Could this possibly have something to do with adjoint functors?

Yes, and how!
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As we know, the natural numbers under addition form a monoid N, that is,

plus is an associative operation with neutral element zero. But as with most

synthetic operations the inverse or analyzing operation is not uniquely defined

without further specification: this is precisely the problem (the ambiguity of

decomposition of a given number 8) which must be resolved in order to render

explicit the “necessity” of the above calculation. While N is of course itself

a category, we must construct another category ω (actually by a so-called

comma-category construction):

Definition x ≤ y iff ∃z(x+ z = y).

In the theory of potential this kind of definition of order is sometimes

called the “specific” order. Every ordered set is a category in which the

objects are the elements of the set and in which the morphisms are the

particular order relation; this is a constantly used conception in the applications

of category theory. Between such categories the functors are the maps which

preserve the order. A crucial functor in our example is multiplication by 10,

an opereation whose origin of course lies in the counting of people (who have

10 fingers each) and the passing to total number of fingers. This operation

is not only order-preserving and full and faithful, but also has both left and

right adjoints
ω

ω.

10·( )

a a

Because of the full-and-faithfulness the two composites at the bottom are
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both the identity. This is a situation which we may call “an adjoint graph”

which is partly dual to the “adjoint cylinder” in our previous example of unity

and identity of opposites (involving Mengen, Kardinalen, pure cohesiveness

and non-cohesiveness with the “points” functor as unifier “dual” to the

unifying role of multiplication by 10 in the present example). The choice of

the correct decomposition of 8 in our calculation is dictated by this adjoint

graph. The next multiple of ten after seventeen is 20 which has a difference of

three and hence the number whose difference with 8 is three, that is five, must

appear. Thus one must somehow be aware of the central role of multiples

of 10, as made precise by our adjoint graph and not only of the associative

law, in order to begin the calculation. Not only that, but the precise relation

between the synthetic operation and the analytic operation is also expressed

by adjointness (not by mere inverse as in groups) for ω is in fact a closed

category with + as “tensor” and with truncated subtraction as “hom”:

x+ y ≥ z

x ≥ y − z·

Of course, what this analyzing “hom” measures in this example is mainly

the degree of lack of the order relation; more precisely, this particular closed

category satisfies a further important condition:

If y ≤ z then y+(z−y) = z, that is, the “evaluation map” y+(z−y) ≥ z

is in fact an isomorphism in ω under the hypothesis y ≤ z.

In this way we have precise explanations (which can be taught when

necessary) for every step of such a calculation and is not only an a posteriori
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“justification” in terms of associativity alone.

Mathematics means “that science which it is possible to reliably teach”.

One knows that with the present system of teaching not all students are

able to become bookkeepers, but armed with the conceptual instruments to

explain more fully, we can begin to unfreeze that division.3

3And of course we have further similar examples of instruments; for with judicious
use of the precise unity-and-identity-of opposites in categories and in 2-categories we can
also render more explicit the basis of the laws of the dreaded differential calculus, which
in 300 years the bourgeoisie have still not succeeded to teach to all workers, farmers, or
bookkeepers. Perhaps they even avoided really trying to teach it, out of fear that the latter
might understand and create an engineering on their own as well - at least my suspicion
that the deProny principle is still in force was strengthened recently when the personnel
director of a Swiss pharmaceutical firm, overhearing a plan to teach calculus to a wider
audience, in all fervent seriousness responded: “criminals! sectarians! - such an idea if
actually carried out would lead to the ruin of the finely tuned Swiss system of vocational
training, and hence to catastrophe.” For whom? . . .
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II

Wednesday, 14 June 1989

In 1844 a courageous German scientist wrote a book which is full of interest

even for us today. In this work he applied the dialectical method to the

study of a particular science and indeed in an extremely consistent way.

On the other hand, he explicitly criticizes Hegel for his idealism. It is very

easy to find this book in the library, but for “social” reasons it seems that

almost no-one looked at it until recently. An essential part of the book is

a description of the origin and foundation of the particular science in the

reflection into our thinking of the real world. We see here an example of the

unity of science which existed in that period for up to this point the foregoing

description applies with equal justice to two great German scientists in that

year and to two sciences, mathematics and political economy. The one which

I want to concentrate on here is of course Grassmann and his excellent

formulation of the foundations of mathematics. I am happy to explicitly

thank Gian Carlo Meloni and Elisabetta Foresti for having urged upon me

a couple of years ago the importance of a serious study of Grassmann’s

formulation of the foundation of our science.

We are in the world, we can move ourselves in the world and hence the

world is reflected in us. In our thinking we struggle to create an image of the
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world and in particular an image of ourselves, in our thinking process.

world we
reflection

real
science

formal
science

we

These two components of the scientific struggle are called by Grassmann

“Real” Science and “Formal” Science, the sciences of things and of thoughts.

In the latter, striving to find the laws of the development of thought there

are two aspects:

• the philosophical science of dialectics which proceeds from the unity of

the “general” to the “particular”, and

• pure mathematics which proceeds from the particular thought to the

general.

In particular, Geometry is not contained in pure mathematics, but is rather

the application of pure mathematics (that is, of thoughts of a particular

nature) to the real science of things in the world
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REAL
SCIENCE

FORMAL
SCIENCE

PURE
MATH

GEOMETRY

S P A C E S N U M B E R S

P U R E G E O M E T R Y

In my second diagram I have permitted myself to continue the process of

reflection by suggesting that the whole first diagram above is reflected into

pure mathematics giving rise to particular ideas of spaces and numbers.

The fact that we are in the world and can move ourselves in the world

is called “Space”. The resulting reflections in thinking are called “Number”

and the result of this fundamental relationship including measuring can be

studied in more detail by means of both pure mathematics and dialectic. The

pure geometry thus defined is the principal content of Grassmann’s book and

more particularly, he takes as fundamental the flat spaces and the extensive

quantities and numbers. Sometimes flat spaces are called “affine”, but there

are many types of affinity and the terminology “flat” favored, for example, by

Walter Noll, suggests more precisely what is intended. But more precisely,

how can we describe the general nature of these particular ideas

of spaces and of systems of numbers?

I claim that we can make a considerable advance toward answering this
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question with the help of the theory of categories and especially by making

explicit the distinction between two kinds of categories with finite limits,

namely the distributive categories and the linear categories.

Moreover, it now seems that possibly the flat categories being studied by

Carboni and by Faro and Schanuel may provide a precise description of the

link between distributive categories and linear categories which must involve

the notion of quantity; however, here I will concentrate on describing the

distributive and the linear.

Both various categories of spaces in general, as well as various categories

arising in the study of a particular space, have the special property of distributivity.

In fact, for some purposes such categories may manifest themselves more

precisely as toposes; toposes are in particular locally cartesian closed and

local cartesian closure implies distributivity. But for reasons of presentation,

both in the mathematical, as well as pedagogical senses, we emphasize here

the more elementary, the more economical and hence still more general

property of distributivity.

So let us first consider a category with finite coproducts denoted by +

and, in particular, with the vacuous coproduct or initial objects denoted by

0, and with finite products denoted by × and 1. In any such category there

is a canonical morphism (A × B) + (A × C)
can

A × (B + C) which is not

incorrect to picture according to our geometrical image as follows (provided
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that this canonical morphism is actually an isomorphism):

C

B

A

We also want that the canonical map 0 → A × 0 is an isomorphism

for all A. If our category E has not only finite products, but more general

finite limits (equalizers, pullbacks, kernel pairs, inverse images) then for every

object X the category D/X (the so-called comma category whose morphisms

are all commutative triangles of D which end in X) is again a category with

finite products (given by fibered products in D over X and having as terminal

object the identity map 1X of X from D) and also with finite coproducts

which are essentially “the same” as those of D. Thus for our concept of

distributivity we require that all the categories D/X for the various objects

X of D should satisfy the invertibility as explained above of the canonical

distributivity morphisms. But we require even more, namely the property

sometimes referred to as disjointness of coproducts and strictness of the initial

objects:

D/0 1
∼

(the unique functor to the one-morphisms category) should be an equivalence

of categories (with inverse given by 10), and moreover for any two objects X,
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Y the functor

D/X × D/Y D/(X + Y )
∼

(given by the functoriality of the coproduct in D) should also be an equivalence,

with inverse given by taking pullbacks along the coproduct injections. This

last condition excludes distributive lattices from being distributive categories

in our sense; however, any distributive lattice L gives rise to a distributive

category S[L] by considering certain formal linear combinations having finite

sets as coefficients – in particular, taking L = 2 reveals the “initial” distributive

category to be S itself.

An entirely different sort of condition on a category is that it be linear.

Again we consider a category with finite products and finite coproducts but

we put immediately the condition

0 1
∼

that the initial and terminal objects be isomorphic, a condition which would

immediately destroy any distributive category (since D/1 ∼ D holds for any

category). We can use this assumption to construct some further canonical

maps. First note that any map from a coproduct to a product is uniquely

determined by a rectangular matrix of “smaller” maps obtained by composing

it with all relevant injections and projections.

∑
i∈I Ai

∏
j∈J Bj

Ai Bj

f

i j∗

fij
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(j∗ is the j-th projection). Thus, in particular, when 0 = 1, there is for any

two objects A and B a canonical map

A+B A×B

 1A 0AB

0BA 1B



whose components are either identity maps or the zero maps constructed as

the composites

A 1 0 B.

0AB

∼

We say that a category is linear if all these canonical maps are isomorphisms

so that in this precise sense finite coproducts and finite products are the same

thing, (and for that reason sometimes called bi-products and denoted by a

third symbol A⊕B).

One of the most fundamental consequences of linearity is that for each

object there is a canonical map

A2 A
+

since in any case coproducts have canonical codiagonals

A+ A A.

A× A

codiagonal

'
+

This operation is automatically associative and commutative and has 0A as
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neutral element. Moreover, every morphism in the category automatically

preserves 0, + and is hence “linear” in the sense commonly used by physicists

and engineers. In particular, for any fixed object L the set of morphisms from

L→ A becomes a commutative monoid in the usual abstract sense with 0LA

as neutral element and with addition defined by composition as follows:

L A
f

g
L A× A A

〈f,g〉

f+g

+

and composing with any given map L′ λ L or A
α

A′ induces functorially

a homomorphism of these abstract monoids.

Any linear category may thus be considered as a linear algebra with its

morphisms a species of number. Note that a linear category can never be

also distributive, unless it is zero: in the familiar example of vector spaces

we see immediately that the dimensions of the left and right hand sides of

the distributive law do not agree.

The fact that the coproduct in any category satisfies itself, the so-called

law of the exchange of the middle two of four, follows from the universal

property. Since the addition morphisms in a linear category are derived

directly, in a unique way, from the coproducts the numbers in such a category

satisfy the same law. This law, which in the presence of zero is equivalent

to the conjunction commutativity and distributivity, itself expresses directly

the fact that + is a self-homomorphism.
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Given that the distributive categories are in general categories of spaces or

of sheaves on a particular space and that the linear categories are categories

whose morphisms form systems of numbers, both general and particular, we

may now pose the general question of making explicit the relations between

the two which arise in various branches of mathematics. It is still an open

question of research whether these connections can all be seen as mediated

quantitatively by the flat categories.

An important principle is

“a system of numbers is a Space”.

This principle expresses itself mathematically as follows:

A given linear category L is often provided with an enrichment in a given

distributive category D. This means that there is a given functor

Lop × L D

also denoted by L and there is a given composition law

L(A,B)× L(B,C) L(A,C)

1 L(A,A)

which are natural morphisms of the category D such that moreover there is

a natural bijection

1 L(A,B)

A B
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between the points of the D-space L(A,B) on the one hand, and the actual

L-morphisms from A to B on the other hand, in such a way that the enriched

composition law specializes on points to the composition law which makes L

itself a category. Usually the product in L will be moreover itself D-enriched,

i.e. L(A,B1 ×B2)
∼ L(A,B1)× L(A,B2) will be an isomorphism in D.

Such an enrichment is precisely the fundamental structure of functional

analysis, because it gives a determined meaning to continuous variations,

smooth parameterizations, and approximations within systems of numbers

all of which can be explained and studied in terms of D-morphisms

T L(A,B)

where T is an appropriately chosen D-space other than the point 1.

The objects of a linear category should be considered as types of numbers,

with the morphisms A→ B being the numbers of type A
B

: in geometry these

types may be simply linear dimensions, or various precise types of tensor

bundles, whereas in physics they may be types such as mass, length, time,

rate, pressure, energy, etc. In contrast, to the “general” role of functional

analysis we must also consider many “particular” linear categories corresponding

roughly to the fact that there are many particular spaces: algebraically

expressed, we often associate to every ring R the linear category P(R) of

all finitely-generated projective R-modules.

More precisely, the all important process of associating systems of numbers

to spaces is often internally representable in the sense that a distributive
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category C of interest comes equipped with an enrichment of a small linear

category R; then with every object X of C we can associate another linear

category whose objects are the same as those of R, but whose morphisms

are the C-maps X → R(A,B). As this category will typically have more

idempotents that R itself, it is usual to take CR(X) the somewhat larger

category obtained by splitting these idempotents. We thus obtain an essentially

“representable” functor

Cop Lin cat
CR

with

CR(X)(A,B) = C(X,R(A,B))

which we may with justice consider as a particular sort of “intensively”

variable numbers. In particular, for X = 1 variability reduces to constancy

CR(1) = R.

It is clear by the universal property of C-coproducts that

CR(0) ∼= {0}

CR(X + Y ) CR(X)× CR(Y )
∼

and by similar reasoning that for any C-epimorphism X ′ X we obtain

a faithful linear functor

CR(X) CR(X ′)
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(indeed for a “regular” epimorphism the latter is the inclusion of those

variable quantities which are invariant for equivalence relation X ′′ X.)

In case C is cartesian closed, the representable notions of intensive variable

number insert themselves immediately into functional analysis (as above

defined). For the notion of T -parameterization in C used since the beginning

of variational calculus

C(T,CR(X))(A,B) = C(T ×X,R(A,B))
def

is then representable in C as

C(T,R(A,B)X).

The analogy between the disjointness property of distributive categories

and the functorial property of representable intensive number may remind

some of the Pythagorean principle “each thing is number” which, as suggested

by Mayberry later in Cambridge, takes on not the usual idealist interpretation,

but quite a materialist one, if we understand under “is” the reflection from

reality to thought. This principle has, in fact, been used with varying degrees

of explicitness by Galileo, Steiner, Cantor, Burnside and Grothendieck, for

we can assign to each distributive category a rig of objects considered with

the equivalence relation of isomorphism B(D) (where the B reminds us of

Burnside and where “Rig” is a term suggested by Schanuel and me to signify

that species of algebraic structure which if only it had negatives “n” would be
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that of commutative rings). But then for each object X of D we can consider

B(X) = B(D/X) and then PB(X) will define a contravariant functor from D

to Lin cat which takes coproducts to products. In particular, each point

1 x X will induce an evaluation homomorphism B(X) → B(1) = B(D)

from variable numbers to constant ones. There is thus a partial representation

B(X) → K(D(1, X),B(D)) of a Burnside Rig as a Rig of functions on the

cardinal of points of the space. If D is sufficiently rich, various portions of

PB(X) may even be representable in D.

Even more directly spatial than the intensively variable numbers are

the extensive ones considered by Grassmann, but whose study has been

systematically kept in the shadows both before and since. These include both

distributions and homology, but attempts to consider them as generalized

“functions” (that is as intensive) can only lead to confusion and mystery. The

extensively variable numbers can also be exemplified by “objective” numbers

in the Burnside manner, for if we are given a category A with a coproduct

preserving functor A → D so that A/0 = 1 and A/(X + Y ) ∼= A/X × A/Y

for X, Y in D (for example a full sub-category such that A1 + A2 ∈ A iff

A1, A2 ∈ A) then A(X) defined to be the abstraction of the category A/X is

• an additive monoid which is

• a contravariant functor ofX, i.e.X
ϕ

Y in D induces (by composition

a coproduct-preserving functor A/X → A/Y and hence) a linear map

A(X)
ϕ∗ A(Y )

• moreover, this covariant functor satisfies

A(X + Y ) A(X)× A(Y ), A(0) {0}.∼ ∼
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In a general way the above three conditions constitute the minimum

requirements for any particular notion of extensively variable number on D.

Instead of evaluation maps, extensive numbers include a Dirac distribution

A(1) A(X)
δX

for each point 1 x X of a space, and in place of the inclusion of constants

in intensively variable numbers B(1)→ B(X), the unique X → 1 induces a

total
A(X) A(1)

δX

for example, the smoke B in the room X may have a density F with respect

to the volume A in the same room, but has, in particular, a total. But

remaining with the “objective” case we can also define a refinement of the

intensive Burnside numbers in terms of their action as “densities” on the

extensive ones, that is, if B→ D is like A above, a “distribution” in D, then

an object F of D/X may be considered to be a proper ratio of B-extensive

numbers to A-extensive numbers in X if there is a coproduct-preserving

functor A/X → B/X agreeing with the pullback operation F ∗ on D/X. By

abstracting from these we can thus contravariantly associate to X a linear

category whose objects are parameterized by the “distributions” A,B etc. in D.
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Question by Meloni:

Can you clarify how the concept of functional analysis as you defined it,

might apply in particular to combinatorial spaces?

Let us take for example D = Kfin
∆op

1 the category of finite reflexive graphs,

that is, an object X is a diagram

X

X0

∂0 ∂0

of finite cardinals with both composites reducing to the identity on the points

X0, and let us consider a given R ∈ Rig(D) (there are many interesting

examples of such, but for example we could consider a discrete or codiscrete

one determined by an ordinary abstract Rig). Then as our linear category

we could take L =
def

LinR(D) the category of all R-modules A in D. This

means that both arrows and points of A can be separately added in a way

that preserves the endpoint operations. For the enrichment we can define

the equalizer

L(A,B) BA BA2 in D.

Note that if R is actually a Ring, then we can define ∂ = ∂1−∂0 and verify

that ∂2 = 0 and thus define H(A) = Z(A)/B(A) in the usual manner. For

example, taking A = RX in D we can define H∗(X) = H(RX) an intensive

measure of the qualitative complication of the graphX which is of importance

in the theory of electrical circuits and of the flow of traffic. The corresponding
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extensive measurement arises for example as H(A) where A = L(RX , R).

∂(a) = 0 means that the arriving flux is equal to the departing flux, whereas

the boundaries are essentially quantities which depend only on the points

and not on the arrows.
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III

Friday, 16 June 1989

We now want to explain a partial solution to the problem of clarifying

the contrast between the general distributive categories and the particular

distributive categories. We will work mostly in the context of topos since

there the technique is more fully developed and internal, although it should

eventually become clear that most of the constructions and distinctions have

sense for distributive categories at the expense of accepting sometimes a more

external formulation.

We begin with the general theory of dimension. Normally one imposes

at the outset the idea that dimensions must be minus infinity, zero, one,

two, etc. but perhaps this idea is based on too limited an experience; we

take instead the point of view that the possible dimensions are intrinsically

determined by the category in which we work and form a structured ordered

set of which it will be a theorem whether or not the order is total. The basic

concept is again that of unity and identity of opposites UIO as expressed by

a cylinder

C

B

p
•

•

that is, by an arrow equipped with two preferred sections s0, s1 that is, ps =

1B for both s. In an arbitrary category the two sections of a cylinder are

called “opposite” simply by formal definition. But in a 2-category such as
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cat we can make a much more precise determination by requiring that these

sections are adjoint to p, that is, s0 a p a s1 a situation which we may briefly

denote by UIOA where the A stands for “Adjoint”. In any cylinder C unites

in itself the two opposites s0 and s1 which are however in themselves identical

with the base B. Here one sees the importance of distinguishing (unlike in

the usual set-theortical foundations) a subobject s from the object which is

its domain.

Note. The apparently excessively simple mathematical formulation of the

dialectical concept as a cylinder was first found in the context of adjointness

in 2-categories, f. ex. in a forthcoming joint paper with Kelly, however,

more recently I have applied it in the mere category of Rings to give a

clarification of the foundations of differential calculus, as in a paper which

I have previously circulated here. (“Unity and Identity of Opposites as

exemplified by differential operator representors”).

If ∆1 is the three element monoid and if K is any regular category with

co-equalizers, then K∆op
1 participates in an adjoint graph in cat which has

the further remarkable property that the left-adjoint preserves finite products

(although not equalizers).

K∆op
1

K

a a

A simple, but important, example of a cylinder with a given base is the
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coproduct diagram

B

B +B

ps0 s1

where the s are the respective injections and the p the co-diagonal. (This

is actually initial in the category of all cylinders with base B). In this case,

at least in a distributive category, the “unity” achieved by the cylinder is

of a purely formal nature, but we might consider other examples where C

is in fact connected, or at least that the fibers are connected unlike in this

initial case where the fibers are a pair of disconnected points. Indeed, in

homotopy theory there is a distinguished class of cylinders satisfying that

sort of condition and a qualitative or homotopy invariant may be defined

as any functor which carries the structural morphisms of a distinguished

cylinder into isomorphisms.

An important condition emphasizing the oppositeness of a cylinder in a

mere category is that the coincidence of the two preferred sections be empty,

more generally, we can consider the equalizer E1 of these two sections as

a subobject of the base B. We could also consider E2 the intersection of

the two subobjects of C. There is obviously a natural map E1 → E2 which

without the unifying p would not necessarily be an isomorphism; however,

an important exercise is to demonstrate that if the two monomorphisms s0

and s1 with common domain B indeed do have a common retraction p then

E1
∼ E2 is invertible, so that the two possible definitions of this coincidence

in fact coincide. Note that our cylinders are not necessarily “trivial” where
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the latter refers to the following construction: If I is an object furnished with

two preferred points t0, t1 then we have a cylinder with base 1; taking the

cartesian product with any given B we obtain a constant or trivial cylinder

I ×B with base B.

Cylinders can be composed to give new cylinders but some compositions

involve a qualitative leap. Let us now consider all the various cylinders which

have a given total space C, and which are consistent with a given choice of

a pair of preferred points denoted by 0 and 1.

C

B

A

1

q

s0 s1

0 1

where most generally we say that p is consistent with p if there exists a

(necessarily unique) q such that qp = p and also t0, t1 with sk = sktk for

k = 0, 1 (note that the last pair of equations follow automatically in the case

of adjoint cylindrifications of C and B).

But a condition qualitatively stronger than mere consistency is that p

should already unite the opposites of p or as we may say that p is an

“Aufhebung” of p if both of the ends s0 and s1 are contained in the right end
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of s1. This additional equation

s0 = s1t0

may be pictured in terms of subobjects of C as follows:

B0

B1

A0

A1•
•

Note in particular that if we assume that our cylinders are strongly consistent

in this sense with the bottom one then the point zero belongs to A1 and

not only to A0 as mere consistency would requiere. If we consider C as a

universal being then the things in C which have dimension A are those which

are members of s0 whereas those which have dimension B are those which

are members of s0. We consider that the element 0 has dimension −∞; those

of dimension 0 are those which have dimension A for all the cylindrifications

A which are “Aufhebungen” of −∞. More generally, we could ask, given

any A, for a smallest A′ among all the “Aufhebungen” B of A, which we

would then naturally call the Aufhebung of A. The latter does not exist,

for example, in the case where C is the category of all presheaves on a finite

category, as is exploited in my paper on display graphics. See the work of
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Schanuel two years ago on the example of unbounded polyhedra for a case

in which the lattice of these refined dimensions is not totally ordered. For

a coarser, natural number value – dimension we may consider the length of

chains of refined dimensions within which every successive pair stands in the

Aufhebung relation. For those C in which the operation of “the” Aufhebung

is well-defined, there is a single ascending chain which determines a coarse

dimension number for each B. It can happen that the two “opposites” are

actually entirely equal, for example in a pointed category, or with a Frobenius

algebra.

Exponentiating a cylinder into a fixed value category gives rise of course

to a graph but exponentiating a single map can often give rise by a Kan

extension to an adjoint graph. For example, given an abelian category L if

we consider the category L[d] of objects equipped with an endomorphism of

square 0, then the induced inclusion taking d = 0 has both left and right

adjoints which compose with the inclusion to give the identity on L. In any

such adjoint graph there is a canonical map from the left adjoint to the right

adjoint, for suitable L we can take the image of this natural map obtaining

a new functor H: in the abelian example just described this H is indeed the

homology functor, as was explained by Cartan-Eilenberg 1956.

The topos of reflexive graphs has dimension 1 because, since the empty
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graph is also chaotic, the diagram

K∆op
1

K

1

1

0

−∞

discrete chaotic

is really aufgehoben and on the other hand one can show that there are no

higher adjoint cylinders within it.

To see the next dimension consider instead the monoid ∆op
2 consisting

of the ten order-preserving endomaps of the three-element totally ordered

set and its topos K∆op
2 of right actions. This is to be considered as a

topos of combinatorial surfaces in which for example the Heyting algebra of

truth-values is a surface with 17 triangular elements. Not only can this one

be put on top of the graphs, in a cylindrical manner, with the left or skeletal

adjoint being a kind of one-dimensional necessity operator and the right one

or co-skeletal adjoint a kind of possibility operator, but in fact the discrete

surfaces are also included in the possibility side, expressing the required

Aufhebung relation. In both of these examples there is a further left adjoint

to the discrete inclusion which is a product-preserving components functor,

that is, giving the cardinality of the components an arbitrary triangulated

surface.

If we know only the underlying graph A of a certain surface X then we

know that X must contain the necessary nec(A) and must be contained in
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the possible poss(A). Much more generally then, given any category E we

consider investigating its objects by means of higher and higher cylindrifications

A of it, or dimensions.

E
A

K

1

π0
necessary

possible

In fact, Kelly showed that if E is a Grothendieck topos based on K then

the class of all such A is a small co-Heyting lattice. Usually only dimension

0 admits the extra left adjoint π0.

The functor π0 counts the components of a thing X in terms of maps from

X. But one also naturally thinks of measuring connectedness via becoming,

that is, with help of maps x,

1 I
X

π0X

t0

t1 x

x0

x1

p

where I itself is a connected object and where t0, t1 are two specified “times”:

if such an x exists, with xtk = xk one would naturally say that px0 = px1,

i.e. that the two points lie in the same component of X. Now, intuitively,

one would not have to use connected objects I of arbitrarily high dimensions

to establish such connections: indeed, the highest dimension necessary for
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this would be philosophically “dimension 1”. Thus it is fortunate that using

adjointness alone we can prove the following theorem:

Theorem. For any object X and for any cylindrification A of E if we denote

by skAX → X the adjunction map associated with the left adjoint, then the

induced map

π0 skAX π0X
∼ ⇐⇒ A is an Aufhebung of K

Thus if there is a smallest such A we may consider it to be K1 the category

of one-dimensional things.
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