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Abstract (June 27, 2020). This brief article is being published now in response to
numerous requests, most of which come from researchers wanting to apply functorial
methods to probability and statistics. Thus there is a natural curiosity concerning
the origins and further developments of this work and of the ideas involved in it. It
does include several programmatic principles, such as

a. the need for an intrinsic metric on each hom set (so as to describe that a
statistical decision function or powerful test is only correct within epsilon);

b. the role of this category as a base for diagram categories, Kan extensions,
etc., (for example the category of Markov processes has as objects the
endomorphisms in this category);

c. an attempt at a rational framework for the representations of general stochastic
processes in terms of Markov processes.

It is unusually brief because it is a fragment of an introduction to an Appendix of a
much larger document that was classified as SECRET. The origin of this document
is closely intertwined with historical events that occurred in the mid-1960s. The first
section is simply a review of standard material on sigma algebras and probability
measures.
Section 2 establishes that there is an adjointness between deterministic and
probabilistic mappings, hence there is, by composition, a monad, (according to
now-standard terminology) whose unit is traditionally named after Dirac.
Section 3 contains reasonable proposals for treating decision problems, stochastic
processes, and Markov processes and the relations between them. Now, I would
emphasize enlarging from the Kleisli category to the Eilenberg–Moore category of
such a monad, in order to facilitate the search for the indicated adjoints, and also
to emphasize that there is an intrinsic measure of distance.
Considerable progress on these questions was made by my student Xiao-Qing Meng
in her thesis, in particular, generalizing the temporal transitions in stochastic
processes, and especially showing that the assignment of an intrinsic metric to convex
sets is a monoidal functor, hence that the whole enriched category theory over convex
sets (in particular those given by probabilistic generators and relations) is naturally
re-enriched by a notion of nearness.

* Spring 1962



Author Commentary (July 2, 2020)

If I had to do this basic paper now, I could omit the Nuts and Bolts of σ-algebras (Section 1).

Instead I would start with an initial postulate expressing the actual intention of an Averaging

Monad: P (A) = the part of HomR(R
A, R) consisting of those functionals that retract along

A → 1, thus preserving constants. Probabilistic mappings can be viewed as a refinement of

classical logical relations (a quotient P → P0 of the relevant monad has as its Kleisli category

the category whose morphisms are “possibilistic maps” or (finitistic) relations in the usual

sense of logic). Such monads are typically on a Cartesian category E , and their most obvious

feature is that P (1) = 1 (which is a concentrated expression of the idea that the average of

a variable that happens to be constant is that constant; indeed, it may be of some use to

consider the larger part P (A) → E(RA, R) satisfying just that ‘averaging’ equation, as well

as homomorphicity.)

The canonical map P (A × B) → P (A) × P (B) (called “marginals”) expresses the

contradiction between general joint distributions exhibiting dependence and the particular

ones that are independent. In fact, the dimensionality of a fiber, 1+AB− (A+B), indicates

how many parameters are needed to measure “dependence”. For example, if A = B = 2

(the classical paradigm case) then for linear P a single parameter measures dependence.

Especially if the Fubini section of the marginals exists, there results an “independence

surface” isomorphic to P (A) × P (B) inside P (A × B); the distance to this surface from

any joint distribution can be measured.

For such categories based on averaging it is crucial to understand the resolutions of

the contradiction “double dualization as a commutative monad” (as emphasized by Arens,

Linton, Kock, Lucyshyn-Wright and others). That is, for sufficiently small submonads of P

the even more useful structure of a symmetric monoidal closed category will be obtained.

That means a hom/(tensor) adjointness within the category of P -algebras over E ; in particular,
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PA ⊗ PB = P (A × B) for the free algebras but more generally, due to the normalization,

there is a canonical P -homomorphism C ⊗D → C ×D for any two algebras.

Note that Hom(C,D) is almost never free, even if C, D are free (for example, consider

C = P (3), D = P (2) in the classical case and note that a cube is not a simplex (a common

terminology for a free algebra in this context).) That Hom is almost never free is one of

the important reasons why it is necessary to consider the whole category of P -algebras (=

“convex sets”), not just the Kleisli category; the vast machinery of enriched categories [2]

can then be applied to construct functor categories, Kan extensions, etc. in order to analyze,

design, and construct natural stochastic processes and decision procedures of all sorts.

Another reason is that not only the unusually intrinsic “generators”, but also “relations”

enable the objective representation of complexes of probabilistic measures, subject to some

a priori convex constraints: for example, a homomorphism from the tetrahedron P (4)

corresponds to an arbitrary 4-tuple of probability measures on an arbitrary codomain space,

whereas a homomorphism from its non-free rectangular quotient P (2) × P (2) corresponds

to a 4-tuple subject to a single convex constraint.

The importance of enriched categories for the subject does not stop there. As I mentioned

in my 1973 Milan paper [6] a convex set has a canonical metric. My student Xiao-Qing Meng

showed in her thesis [7] that this assignment is a morphism of closed monoidal categories;

that means that all the stochastic diagrams, natural transformations, etc. carry an intrinsic

notion of approximation and optimization as a result of their re-enrichment via that monoidal

functor into metrically enriched categories.

To facilitate understanding and use of these metrics, there are some simplifications. Since

there are many variations on the basic C = EP → E , consider relevant axioms that hold for all

these C. Already mentioned is the “normalization” implying that the functor is represented

by 1 = P (1), but (whether we are dealing with compact convex sets or dyadically finitary
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ones) the actual P (2) = I plays a key role and is indeed adequate in Isbell’s sense; that is, any

given map C(I, C1) → C(I, C2) in E is induced by a map C1 → C2 if only it commutes with

the right action of every endomap in C(I, I) (= probabilistic maps 2 → 2). The submonoid

of C(I, I) consisting of those endomaps that preserve a chosen one “0” of the two injection

points is typically commutative and ordered by divisibility. Thus for each pair x, y : 1 → C

we can consider the

Definition. M(x, y) = {m : I → I,m(0) = 0}, with g : I → C, g(0) = x and (gm)(1) = y.

Then, for any three elements of C,

M(x, y)M(y, z) ⊆ M(x, z)

is the “triangle inequality” appropriate for a “nearness” relation (that will give information

of the type distance d defined by M = exp(−kd) that will exist if M is suitably complete). In

any case, analogously with the metric theory that is based on addition of non-negative reals,

M is a closed category so that categories enriched over it can be identified with nearness

spaces in the suggested sense.

What is being measured by this nearness can be understood as follows: the interior of

such a convex set consists of distributions that are more random than the less random ones

on the extreme boundary; of a given x, y the y can normally be represented as a mixture of

x confounded by a more determinate point near the boundary (just extend the line. . . ); the

weaker the confounding, the nearer x is to y (it is clear that such metrics are not symmetric.)

Perhaps the simplest example of the statistical application of an intrinsic metric/nearness

on the convex hom-sets is optimal decision. Suppose X is a space of parameters presumed to

characterize a system of interest but not directly measurable, and suppose a morphism X →

D specifies what a correct decision would be if we knew the true value of X. Suppose there is
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a morphism X → E describing an experiment whose outcome can in fact be measured, thus

the problem is to determine a morphism E → D that makes a decision based on the reading

of the experimental outcome. Yet even if both given morphisms are deterministic, there

may be no such strictly commutative diagrams, so that a statistically best solution may be

sought (and usually exists), namely, a point of the convex set C(E,D) whose experimental

transform into C(X,D) is as near as possible to the given correct decision. An opposite sort

of triangle results if two spaces E,D are assumed to be equipped with given morphisms to

(rather than from) a third space Y that is observable (rather than hidden) while D consists

of (names for) “causes” via D → Y . The sought-for E → D then postdicts causes at least

for the part of Y parameterized by E. In the special case E = Y , the goal is (approximate,

random) sections of given D → Y , more likely to exist than deterministic sections. Both

kinds of triangles occur in standard categorical ”diagonal fill-in” problems, where a given map

X → Y has two given factorizations through E,D respectively, resulting in a commutative

square. Such a diagonal would be a single map E → D satisfying two equations so that

an approximate diagonal would involve two nearness estimates. The typically statistical

optimization approach specifies a tolerance α on one of these triangles and seeks E → D to

optimize the nearness (to commutativity) of the other triangle, subject to that α-constraint.

(Or the distance between the two composites could be minimized.)

Having outlined above some of the possible developments of the mathematics, I now

return to sketch the origin of the paper.

Probabilistic Mappings in the Mid-1960s

My acceptance of the job offered by the “Think Tank” in Southern California depended on an

agreement that the main topic treated would be Kennedy’s Arms Control and Disarmament

Agency. The preliminary interview in the Pentagon was requested by that Agency. Somewhat
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more precisely, the aim of the study would be: planning for the technical support of an Arms

Control Treaty between the Superpowers, for example, of a reliable verification protocol to

be agreed upon.

It was envisaged that a protocol would involve three tiers of verification: Space, Stratosphere,

and On-site. The passage from one tier to the next would follow probabilistically from

continuing observations. What would be the mathematical framework under which this whole

fantasy would function? Someone described it as a “network of probabilistic mappings”.

“What would that mean?” I asked myself: “It must involve diagrams in a category extending

the monoid of Markov processes”, and then I produced the present document, which served

as an Appendix to an Appendix of a large SECRET document.

The proposal was to study a projected system of verification and inspection for a possible

Arms Control Agreement between the Superpowers. The system would be organized into the

three levels: satellite surveillance, which could trigger the request for over-flight inspection,

that in turn could trigger an on-site inspection. Of course, the trigger thresholds would be

a matter of diplomacy, but the system as a whole would involve an elaborate network of

“probabilistic mappings”.

The whole thing had to be scrutinized by the Pentagon before the Arms Control Agency

could do anything. Probably, passing through so many hands increased its exposure to

espionage. The leader of the group within the Think Tank stated that an important

calculation to be done by the study would be the determination of the probability of the

discovery of missiles concealed on the ocean floor as part of a planned circumvention of any

treaty. That was also the year of the Cuban missile crisis.

A few years later I came across a Russian document containing several of the results of

my unpublished thesis, including the mistakes, (as well as the missing two lines that we later
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discovered had been missed by the typist). But there was no attribution. And in Moscow the

lectures were beginning on a very similar category, called the Markov category (not without

justification, of course, although I don’t believe Markov himself used categories).

I was surprised a couple of years later by being offered a job with French military

intelligence. The one who transmitted that offer was a collaborator of M. Giry, which may

explain why she knew about the “secret” developments in the US.

Apparently regarding the contact with the Arms Control Agency as dormant, the leaders

of the Think Tank had a further proposal, disregarding their initial agreement with me: First,

I should study books by Mao Tsetung and Che Guevara as a preparation for evaluating a

large system designed to eliminate the guerilla threat in Vietnam. My last paychecks were for

studying that proposal. Of course, I advised against it, after having verified mathematically

that the proposed system was unfeasible. The last time I saw the director of the “Vietnam

Proposal” was at the old Waltham Watch Factory, which had been taken over as a subsidiary

of the California Think Tank. Naturally, my report met with utter disapproval. I took a bus

from Waltham to NYC in order to defend my thesis at Hamilton Hall, in front of Eilenberg,

Kadison, and Morgenbesser. Now I could complete my application for a teaching job at Reed

College.

A few years later the New York Times reported on the failure of a large system that

differed only in detail from the one I had analyzed. The supporters of the proposal had

taken the plan and defected to another Think Tank.
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The Category of Probabilistic Mappings

With Applications to Stochastic Processes,

Statistics, and Pattern Recognition

1962

F. William Lawvere

I. Objects and Maps in the Category of Probabilistic Mappings

I.1 Measurable Spaces

1.1. The objects which we consider are measurable spaces Ω. That is, Ω = ⟨S,B⟩ will be an

ordered pair in which S is any set and B is any σ-algebra of subsets of S. This means that:

(0) Every member of B is a subset of S.

(1) The empty set ∅ and the “whole space” S are members of B.

(2) If B ∈ B (i.e., if B is a member of B) then the complement (S \B) ∈ B.

(3) If Bi, i = 0, 1, 2, . . . is any countable family of members of B, then the union
⋃∞

i=0 Bi

is also a member of B.

We also say that B is the class of measurable sets of Ω.

1.2. If Ω = ⟨S,B⟩ is any measurable space and if f is a function defined on S with values

in a partially ordered set Λ, then f is said to be Ω-Λ-measurable if for each λ ∈ Λ we have
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{ω | f(ω) ≤ λ} ∈ B; that is, if the set of all ω ∈ Ω whose value under f precedes a given λ is

measurable for each λ. For example, we will use this notion when Λ = R, the real numbers.

1.3. More generally, if Ω = ⟨S,B⟩ and Ω′ = ⟨S ′,B′⟩ are any measurable spaces, and if f

is any function defined on S with values in S ′, then f is said to be a measurable mapping

if and only if f−1(B′) ∈ B for every B′ ∈ B′, where f−1(B′) denotes the set of all x ∈ S

for which f(x) ∈ B′. The foregoing paragraph is seen to be a special case of this by

considering Ω′ = ⟨Λ,B(Λ)⟩ where B(Λ) is the smallest σ-algebra containing all sets of the

form {λ′ | λ′ ≤ λ} for all λ ∈ Λ.

1.4. If Ω = ⟨S,B⟩ is a measurable space, then by a probability measure on Ω is meant a

function P which assigns to every measurable set B ∈ B a real number P (B), in such a way

that:

1. 0 ≤ P (B) ≤ 1 for every B ∈ B

2. P (S) = 1

3. If Bi ∈ B for i = 1, 2, . . . and if Bi ∩ Bj = ∅ for i ̸= j (i.e., Bi are pair-wise disjoint

measurable sets) then

P (
∞⋃
i=1

Bi) =
∞∑
i=1

P (Bi).

1.5. In case S is a countable set and B consists of all subsets of S, then for any probability

measure P on ⟨S,B⟩ and any B ∈ B, we have

P (B) =
∑
x∈B

P ({x})
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where {x} is the “singleton” subset of S whose only member is x, for each x ∈ B. Thus,

in this case, a probability measure is already determined by a function p(x) = P ({x})

of members of S; this function is arbitrary, save for the two conditions 0 ≤ p(x) ≤ 1,∑
x∈S p(x) = 1.

If S is not countable, then probability measures on Ω are not determined by their values

at singletons. For example, if S = {x | 0 ≤ x ≤ 1} = the “unit interval”, and if B = the

smallest σ-algebra containing all closed subintervals = the class of “Borel sets”, then there

are a great many probability measures P on Ω = ⟨S,B⟩ for which P ({x}) = 0 for all x. For

example, in this case P = Lebesque measure = (generalized) length is a probability measure

but every singleton has zero probability.

1.6. If Ω = ⟨S,B⟩ and Ω′ = ⟨S ′,B′⟩ are measurable spaces, if f is a measurable mapping

(1.3) from Ω to Ω′, and if P is a probability measure on Ω, then the probability measure Pf

induced on Ω′ by P via f is defined by

(Pf)(B′) = P (f−1(B′))

for every B′ ∈ B′.

To verify that Pf is a probability measure (i.e., satisfies the conditions 0, 1, 2 of 1.4)

note that the mapping f−1 from B′ to B is a σ-homomorphism; i.e., that

f−1(S ′ \B′) = S \ f−1(B′) for B′ ∈ B′

f−1(
⋃∞

i=1 B
′
i) =

⋃∞
i=1 f

−1(B′
i) for B′

i ∈ B′

f−1(S ′) = S

From this it is obvious that Pf is a probability measure if P is, in fact, any mapping from
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B′ to B which satisfies the above conditions (whether induced by a mapping from S to S ′ or

not) will induce a mapping from probability measures on Ω to those on Ω′.

1.7. If Ω = ⟨S,B⟩ is a measurable space and, if x ∈ S, then Px defined by

Px(B) =

 1 if x ∈ B

0 if x /∈ B

for any B ∈ B, is a probability measure on Ω, known as a “one-point” or “Dirac” measure.

1.8. Let Ω = ⟨S,B⟩ be a measurable space, P a probability measure on Ω, f a bounded

measurable mapping from Ω to R = the space of real numbers with Borel sets as the

measurable sets. (“Bounded” means that for some positive real number M , |f(x)| ≤ M

for all x ∈ S.) Such an f is often called a bounded random variable. We now wish to define

the P -expectation of f , also called the integral of f with respect to P , denoted either by

∫
Ω

f dP

or by ∫
Ω

f(x)P (dx).

This can be done by considering approximations to the integral based on doubly infinite

increasing sequences

· · · ≤ a−2 ≤ a−1 ≤ a0 ≤ a1 ≤ a2 ≤ · · ·

of real numbers. Given any such sequence a, define the upper approximation

J(f, P, a) =
∑

−∞<n<∞

f(an)Pf(an−1, an]
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and the lower approximation

J(f, P, a) =
∑

−∞<n<∞

f(an)Pf(an, an+1].

Here Pf(a, b] = P{x | a < f(x) ≤ b} as defined in 1.6. The upper integral is defined by

I(f, P ) = inf J(f, P, a)

and the lower integral by

I(f, P ) = sup J(f, P, a)

where the infimum and supremum are taken over all doubly infinite increasing sequences a.

If I(f, P ) = I(f, P ), then the function f is said to be integrable with respect to P , and the

integral is defined to be the common value

I(f, P ) =

∫
Ω

f dP = I(f, P ).

It can be shown that every bounded measurable function (on Ω) is integrable with respect

to every probability measure (on Ω). For each individual P , there will ordinarily be many

unbounded functions which are integrable with respect to P .

1.9. If S is a countable set, B the family of all subsets of S, f any bounded measurable

function on Ω = ⟨S,B⟩, and P any probability measure on Ω, then

∫
Ω

f(x)P (dx) =
∑
x∈S

f(x)p(x)

where p(x) = P ({x}) as defined in 1.5.
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1.10. Let f, g be any two bounded measurable functions on a measurable space Ω, and let

P be any probability measure on Ω. Then

∫
Ω

(f + g) dP =

∫
Ω

f dP +

∫
Ω

g dP.

If a is any real number, then

∫
Ω

af(x)P (dx) = a

∫
Ω

f(x)P (dx).

If fn is any sequence of bounded measurable functions such that fn is uniformly bounded

(|fn(x)| ≤ M for all x, n) and if lim
n→∞

fn(x) = f(x) for each x ∈ S, then

lim
n→∞

∫
Ω

fn dP =

∫
Ω

f dP.

1.11. If 0 ≤ θ ≤ 1 and if P1, P2 are any two probability measures on the measurable space

Ω, then P = θP1 + (1− θ)P2 is also a probability measure, and

∫
Ω

f dP = θ

∫
Ω

f dP1 + (1− θ)

∫
Ω

f dP2

for any bounded measurable function f on Ω.

I.2 Probabilistic Mappings

2.1. Let Ω = ⟨S,B⟩ and Ω′ = ⟨S ′,B′⟩ be any measurable spaces. We say T is a probabilistic

mapping from Ω to Ω′ and write Ω
T−→ Ω′ if and only if T assigns, to each point in Ω, a

probability measure on Ω′, and does so in a measurable way. More precisely, T is a function
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of two variables x ∈ S,B′ ∈ B′ having the properties

(0) 0 ≤ T (x,B′) ≤ 1 for all x ∈ S,B′ ∈ B′

(1) T (x, S ′) = 1 for all x ∈ S

(2) T (x,
∞⋃
i=1

B′
i) =

∞∑
i=1

T (x,B′
i) for each x ∈ S and for each disjoint

sequence B′
i of measurable sets of Ω′.

(3) {x | T (x,B′) ≤ a} ∈ B for each 0 ≤ a ≤ 1 and for each B′ ∈ B′.

We will refer to T (x,B′) as the (conditional) T -probability of the event B′ in Ω′, given the

elementary event x in Ω, or as the T -probability that x is mapped into B′. In case S ′ is

countable and B′ consists of all subsets of S ′, then a probabilistic mapping Ω
T−→ Ω′ is

entirely determined by a function t of two point variables x ∈ S, x′ ∈ S ′. (See 1.5.)

2.2. Every measurable mapping f from Ω to Ω′ (these being measurable spaces) may be

regarded as a probabilistic mapping Ω
Tf−→ Ω′ as follows:

Tf (x,B
′) =

 1 f(x) ∈ B′

0 f(x) /∈ B′
.

That is, Tf assigns to x the one-point measure (on Ω′) which is concentrated at f(x).

Probabilistic mappings of this special sort we call deterministic.

2.3. Let Ω
T−→ Ω′ U−→ Ω′′ be probabilistic mappings. We define the composition Ω

UT−→ Ω′′

to be the probabilistic mapping defined by

(UT )(x,B′′) =

∫
Ω′
U(x′, B′′) · T (x, dx′)
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That is, (UT )(x,B′′) is the T (x, )-expectation of U( , B′′).

This is the correct law of composition of conditional probabilities in physical and other

situations.

2.4. If Ω′ is a countable space in 2.3, then (UT )(x,B′′) =
∑

x′∈S′ U(x′, B′′) · T (x′, x). If Ω′′

is also countable, then

(UT )(x, {x′′}) =
∑
x′∈S′

U(x′, x′′) · T (x, x′).

2.5. If Ω
f−→ Ω′ g−→ Ω′′ are measurable mappings, then

Tgf = Tg ◦ Tf

where gf is the usual composition of functions (thus the deterministic mappings constitute

a subcategory (see 2.7) of the category of all probabilistic mappings).

2.6. A probabilistic mapping 1
P−→ Ω, where 1 is a one-point space, is just a probability

measure on Ω. If Ω
T−→ Ω′ is a probabilistic mapping, then TP is the induced distribution

on Ω′. This is familiar in case Ω′ is a Euclidean space and T a deterministic mapping (i.e.,

T is a “random variable”). Another special case is that where Ω = ⟨S,B⟩, Ω′ = ⟨S,B′⟩, and

B′ is a sub-σ-algebra of B, while T is the “identity” mapping; then TP is the restriction of

P from B to B′.

2.7. If

Ω
T−→ Ω′ U−→ Ω′′ V−→ Ω′′′
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then

V (UT ) = (V U)T.

Also, if iΩ denotes the probabilistic mapping defined by the (deterministic) identity map on

Ω, then

iΩ′T = T = TiΩ

whenever Ω
T−→ Ω′. Thus, the class P of all probabilistic mappings between measurable

spaces, together with our notion of composition, is a category in the sense of Eilenberg–Mac

Lane. Thus, the notions of functor, natural transformation, and adjoint functor have a

well-defined meaning in connection with P . The “objects” of P are arbitrary measurable

spaces.

2.8. Let, for each object Ω in P , D(Ω) = the set of all probability measures on Ω, equipped

with the smallest σ-algebra such that for each measurable A ⊆ Ω, the evaluation D(Ω) →

[0, 1] at A is measurable. Thus D(Ω) is also an object in P . For any Ω
T−→ Ω′ in P , define

the deterministic map D(Ω)
D(T )−→ D(Ω′) by

D(T )(P )(A′) =

∫
Ω

P (dω)T (ω,A′)

for every P ∈ D(Ω) and every measurable A′ ⊆ Ω′. Thus, D(T )(P ) = TP for P ∈ D(Ω);

i.e., viewed as a probabilistic mapping,

D(T )(P,A) =

 1 TP ∈ A

0 TP /∈ A

for every element P of D(Ω), and for every measurable set A of probability measures on Ω′.
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Define also the probabilistic mapping

D(Ω)
ϕΩ−→ Ω

for each object Ω in P by the formula

ϕΩ(P,A) = P (A)

for each element P of D(Ω) and each measurable A ⊆ Ω. Then for any Ω
T−→ Ω′ in P , the

diagram

D(Ω)
ϕΩ //

D(T )

��

Ω

T

��
D(Ω′)

ϕΩ′
// Ω′

is commutative, so that ϕ is a natural transformation of the functor D into the identity

functor on P .

2.9. Actually D is adjoint to the inclusion of the deterministic subcategory into P ; i.e., if

Ω
T−→ Ω′ is any probabilistic mapping then there is a unique deterministic mapping f such

that the diagram

Ω

T

""

f

��
D(Ω′)

ϕΩ′
// Ω′

is commutative. (In particular, there is a deterministic inclusion Ω → D(Ω) and this

is actually a retract with associated retraction ϕΩ.) It is expected that this adjointness

observation will aid in the analysis of various methodological problems such as Bohm’s

questions about quantum mechanics.
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I.3 Stochastic Processes and Decision Maps

3.1. A fairly general class of decision problems may be formulated as follows. There is a

basic space Ω and a measurable partition ∆ of Ω, elements of ∆ being called “patterns” or

“decisions”. We denote the quotient mapping Ω → ∆ by f . (Actually, for the formulation of

the problem we could allow f itself to be “fuzzy”; i.e., probabilistic.) There is also a space

T of “observable states” and a probabilistic mapping Ω
F−→ T expressing the conditional

probability F (ω,A) that the observed state lies in any A ⊆ T , given that the basic state is

ω ∈ Ω. The problem is then to find a “best” completion δ of the diagram

Ω F //

f
��

T

δ
��

∆

One of the “virtues” of probability theory (and hence of the category P) is that this general

problem, when properly explicated, has a solution in many cases in which the corresponding

deterministic problem does not; a basic reason for this is the possibility in P of forming

convex combinations of maps, whereas there is no corresponding operation which produces

deterministic maps. Of course, if there exists δ such that δF = f , we would choose such δ

as the solution to our problem; unfortunately, this is not possible for many F, f of interest.

One particular scheme for making definite the criterion for choosing δ is to work with a given

distribution 1
P−→ Ω on Ω, and to choose δ so as to maximize the quantity

∫
Ω

(δF )(x, {f(x)})P (dx)

which represents the average (with respect to P ) of the probability of making the correct

decision by first making the observation F and then following the decision rule δ. The

probability measure P clearly expresses the relative importance attached to various basic
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states x ∈ Ω when evaluating the decision rule δ. In the absence of any such P , one would

choose δ so as to maximize

inf
x∈Ω

(δF )(x, {f(x)}).

The existence of solutions δ to these optimization problems can be established in very great

generality by topological arguments.

3.2. We consider stochastic processes with discrete time. Let N be the category with

countably many objects and no non-identity maps, and let PN denote the category whose

objects are sequences Ω0,Ω1, . . . of objects in P . We define a functor

PN Φ−→ PN

by

Φ{Ωn}n =

{∏
k<n

Ωk

}
n

for each sequence Ω of measurable spaces, where
∏

k<nΩk denotes the measurable space

whose elements are all n-tuples ⟨x0, . . . , xn−1⟩ with xi ∈ Ωi, equipped with the smallest

σ-algebra which makes each projection
∏

k<nΩk → Ωj measurable. If Ωn is thought of as

the space of all possible states of a system at time n, then Φ(Ω)n is the space of all possible

histories of the system up to time n. We define a general temporally discrete stochastic

process P in Ω to be any map

Φ(Ω)
P−→ Ω

in PN . Given any two processes

Φ(Ω)
P−→ Ω, Φ(Ω′)

P ′
−→ Ω′
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the general theory of categories indicates that a map P
f−→ P ′ of stochastic processes should

be defined as a sequence

Ωn
fn−→ Ω′

n

of maps in P , such that for each time n ∈ N , the diagram

Φ(Ω)n
Φ(f)n //

Pn

��

Φ(Ω′)n

P ′
n

��
Ωn fn

// Ω′
n

is commutative. Since there is also an obvious notion of composition for such maps, all

stochastic processes and all maps of such determine a category

(Φ,PN)

which we call the category of temporally discrete stochastic processes. All the machinery

developed in the general theory of categories, as well as that which can be developed for

the particular category P , can thus be applied to formulate, explicate, and solve many

methodological problems within the category (Φ,PN).

3.3. If N denotes the additive monoid of non-negative integers, considered as a category

with one object 0, then the functor category

PN

is the category of temporally discrete Markov processes. Explicitly, an object in PN is just

a measurable space Ω together with a probabilistic mapping Ω
T−→ Ω, and maps f in PN
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satisfying a commutative diagram

Ω
f //

T

��

Ω′

T ′

��
Ω

f
// Ω′

If we are given a Markov process ⟨Ω, T ⟩ together with an initial distribution 1
P0−→ Ω, we

can view our situation as a general stochastic process in which

1. Ωn = Ω for all n ∈ N

2. Φ(Ω)0 → Ω0 is just P0

3. Φ(Ω)n → Ωn is just the composition

∏
k<n

Ωk → Ωn−1
T−→ Ω

where the first is the projection; i.e., the dependence on the past is really only on the

preceding moment and, furthermore, the law of transition from one time to the next does

not change with time.

If we denote by (1,PN) the category of Markov processes augmented with initial distributions,

then the foregoing discussion determines a functor

(1,PN) → (Φ,PN).

This assertion carries the additional information that the various mappings match up properly,

and also raises the question of whether the above functor has an adjoint. That is, is it possible

to extend any process to a Markov process in a fashion which is universal with respect to
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maps to (or from) Markov processes?
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Part of Bill’s email to Bob Rosebrugh (01/25/2016)

I realize that there is a group of younger researchers who would like to know more about

this topic (so do I). Some are claiming that it will become a key ingredient in DARPA’s1

thrust toward “genuine” artificial intelligence.

1. It was after 1962 that Godement’s notion of standard construction became developed

by Kleisli, Huber, Eilenberg & Moore, and Beck, into the theory of algebras for a Monad.

Once that theory is made explicit, an extremely compact description of the basic construction

can be given, namely probabilistic mappings are just the morphisms in the Kleisli category

of the probability monad. In fact, there are several reasons for considering instead the larger

1Defense Advanced Research Projects Agency
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Eilenberg-Moore category of the same monad, because it is a symmetric monoidal closed

category whose unit object is terminal; that permits numerous constructions involved in

inference, et cetera to be expressed explicitly in terms of Kan extensions.

2. The possibility of an intrinsic metric for gauging the accuracy of statistical decisions

was realized much later in the doctoral thesis of my student X.Q. Meng, based on my 1973

Milan paper concerning the closed structure of the intrinsic metric on convex sets.

Apart from the completion of the mathematical structure mentioned in the above two

paragraphs, what interests me greatly is the question of why category theory is so completely

unused by statisticians during the last 50 years. There are surprising conjectures.
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