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Abstract. The “petit” toposes of sheaves on particular generalized spaces are

described and related to the particular “gros” toposes of general spaces of

the simplicial, bornological, and algebraic categories. The topos-theoretic image

construction is described and used in a particular case as a foundation for general

topology. Some indication of the historical process, from Hopf 1940 through Leray

1945 and Grothendieck 1958 to Grothendieck’s 1960 study of central examples of

both kinds of toposes is given, as are some suggestions for further use of toposes in

functional analysis and dynamical systems.

1. Algebras of set-valued continuous functions on spaces and other

situations

A sheaf is a continuous set-valued function on a “topos”. A topos is a very general sort of

“situation”, for example a generalized space. As in analysis and geometry, where complex-

valued rather than set-valued functions are considered, we start with the algebra of functions

and then try to understand the actual situations by dualizing. For lack of a dual name these

algebras are also called toposes. They are special categories: for example the algebra of

sheaves on the one-point situation is the category S of all abstract sets and mappings. Even

though the scalars are sets rather than complex numbers we can add and multiply, since
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these algebras are categories with coproducts and products. The following distributive law

is valid

A×B1 + A×B2 A× (B1 +B2)
∼

0 A× 0
∼

where 0 is the empty coproduct or “initial object” of the (category of sheaves on a) given

topos. Even better, we have lim over any arbitrary indexing category I, generalizing the

+ (which corresponds to I = discrete 2), and we also have pullbacks (and equalizers,

inverse image, binary intersection) “fibered products” generalizing × and the bilinearity

or distributivity holds of all these

(lim I Ai)×C (lim J Bj) lim I×J (Ai ×C Bj)
∼

where all Ai (and Bj) are assumed compatibly equipped with maps Ai → C, Bj → C. Here

the I, J are any small index categories; if I happens to be filtered (directed) then I diag I× I

is cofinal, so as a consequence we have that lim I commutes with fibered products (hence

binary products, equalizers, . . . ) for filtered I. Together with the condition that the whole

algebra (a class) has a set of generators, these were essentially the axioms introduced in May

1963 by Grothendieck and Giraud. All these distributivities are actually consequences of

the existence of a few adjoint functors, so Tierney and I in August 1970 (ICM) were able to

show that equivalent axioms are (as improved by Mikkelsen and Paré slightly later)

there exist internal “function spaces” satisfying a natural bijection

X Y A

A×X Y

there exists a “truth-value” object Ω which classifies arbitrary monomorphisms by

unique “characteristic functions”

X Ω

? X

But the definition of morphism between S-toposes remains
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X Y
f

“is” a functor f ∗ from the algebra of Y-sheaves to the algebra of X -sheaves which preserves

“addition and multiplication” i.e. limarb and lim fin . By the “small generator” assumption,

the preservation of lim is equivalent to the fact that f ∗ has a right adjoint f∗ from X -sheaves

to Y-sheaves; hence we can identify f with a pair of fuctors f∗, f
∗ such that

f ∗ a f∗

f ∗ is lex

where lex means “left exact”, i.e. preserves lim fin , for which suffices the preservation of the

empty product (or terminal object) 1 and of fibered products.

The older examples (Leray, Godement, . . . ) were values of the 2-functor

top Top/Ssh

into the category (of categories) defined above, defined on the classical category top of

topological spaces and continuous maps (explained below). Even easier is the 2-functor

gps Top/S

which assigns to every group the category of all G-sets (exercise: compute ΩG and Y X

where X, Y are G-sets). One of the reasons for Top/S is the need, arising from the Hopf

1940 discovery in algebraic topology (which led to the cohomology of groups and hence to

homological algebra) for having both top and gps in one bigger category.

The construction of sh(X) for a space X (and basis U of open sets) can itself be

understood in terms of a map of “simpler” toposes

S |X| SU
Γ∗

Γ∗

where the left is just the category of all families A of sets abstractly indexed by the points of

X, while the right is the category of all “presheaves” B on the poset U . Thus B involves a

3



set B(U) given for each U ∈ U but also a set map B(U)→ B(U ′) given for each pair U ′ ⊆ U

in U , subject to obvious functoriality (transitivity) conditions. A map B → B′ is natural,

i.e commutes with these given “restriction” operations. Then

Γ∗(A)(U) =
def

∏
p∈U Ap

Γ∗(B)p =
def

limU3p B(U)

and it is easily checked that Γ∗ a Γ∗, i.e.

B Γ∗A

Γ∗B A

The all-important “lex” condition on Γ∗ follows from the fact that the lim is over all the

U -neighborhoods of p, which form a filtered poset. Note that the composite GΓ = Γ∗ ◦ Γ∗

is a glorified interior operator on S |X|, extending the well-known one on 2|X| by considering

those A such that Ap =
{

0

1
.

The category sh(X) is the Top/S image of Γ, and as such it can be described from either

end; in the factorization

S |X| sh(X) SUop ip = Γ
p i

the distinctive properties are

p∗ is faithful, such p are often called “surjective”

i∗ is full and faithful, so can be essentially regarded as a full sub-category.

The condition that B “is a sheaf”, i.e. lie in the subcategory, turns out to be the famous

“pasting” condition satisfied by examples such as

B(U) = top(U, Y )

where Y is any other fixed topological space. The subsheaves of 1 are just the open sets of

X, but the sub-presheaves R ⊂ U of such U in SUop
are determined by a family V = {V ∈
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U|V R} of elements of U for which

V ∈ V =⇒ V ⊆ U

V ′ ⊂ V ∈ V =⇒ V ′ ∈ V .

Those R for which Γ∗(R) ∼ Γ∗(U) are called coverings of U . Then the pasting condition

is just

R U

B

∀ coverings R of U

∀f
∃!f.

f
f

Note that f itself is any natural map (i.e. in SUop
); it is determined by fV for each V ⊆ R,

V ⊂ U subject to compatibility for any V ′ ⊆ V .

The order-ideal property of V eliminates the need to consider “overlaps” V1∩V2 separately.

The maps sh(X) → sh(Y ) of toposes are all uniquely determined by continuous maps

X → Y , at least if X, Y are Hausdorff spaces; even for the more general “sober” spaces, we

may consider that sh determines top→ Top as a subcategory.

A topos E is said to locally lie in some category of Top if there is S ∈ E with S → 1

epimorphic so that E/S (the category whose maps are commutative E-triangles over S – it

is also a topos) lies in the subcategory. In particular, E is an étendue if it is locally in top.

Any group G “is” an étendue, for if E = SGop
and S = G acting on itself by right

multiplication, then it is easily calculated that E/S ≈ S = sh(1).

This apparently trivial remark is actually important. For some more general examples,

note first that for any small category C, SCop
is a topos since, from the Giraud-Grothendieck

point of view, all the distributive laws are valid because lim & lim are computed C ∈ C-wise

in this case and the laws are valid in S; from the Lawvere-Tierney point of view we can
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directly verify
Y X(C) = NatC(C ×X, Y )

Ω(C) = all subfunctors of C

where we have identified C with C(−, C) ∈ SCop
. If S ∈ SCop

then S → 1 is epic iff all

S(C) 6= 0, but independently of that

SCop

/S ' S(C/S)op

where C/S is a semi-direct product category generalizing the “covering groupoid” of an

action S of a group C.

(For another example of the E/S construction, note that if X is a space and S a sheaf on it,

then X/S is also a space, namely the corresponding étale space with its local homeomorphism

X/S π X .)

I claim that SCop
is an étendue iff all maps in C are monomorphisms. For the last is

equivalent to saying that all of the categories C/C are posets, and S =
∑

C C(−, C) is a

“cover” with

C/S =
∑
C

C/C.

To picture these examples, suppose that C is the additive monoid of non-negative time

durations (or more generally abstract time could be replaced by control processes). Then

SCop
is the category of all autonomous (discrete-state, non-necessarily reversible) dynamical

systems (or more generally controlled systems) whereas (since C has cancellation) C/S is

time-considered as a poset, with S(C/S)op the category of non-autonomous systems. On the

other hand, any SPop
with P a poset is spatial with P a subbase for a freely-generated notion

of open set on the set (Top/S)(S,SPop
) of points. (These points p are actually determined

by the restriction of p∗ along the Yoneda embedding SPop P, which restrictions are just

arbitrary “flat” functors P→ S.)
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For example SUop
(for a basis U on a set |X| as before) is itself the topos of sheaves on

a larger space X̂ ⊃ X, (whose points are more easily calculated than for general P since the

filteredness of U makes the above “flatness” condition more understandable).

A general S-topos X is actually an exact retract X i SCop
for some set C → X of

generators. But i∗ does not in general preserve lim , not even filtered ones (that would be a

Nötherian condition) not even finite ones. In particular, the composite sh(X)→ SUop → S

(the last being the unique “global sections” functor induced by X → 1) does not preserve

epimorphisms. In more detail i∗ preserves all lim , hence epimorphisms, thus using i∗, such

concepts in sh(X) can be computed from SUop
but not as in SUop

: in the latter the objects

U ∈ U SUop
are projective, i.e. epimorphisms p are surjective (on each evalU)

A

U B

p
∃a

∀b

But although U sh(X) the epimorphisms there are only locally surjective:

for any b, the set of V → U for which there exists aV with

V A

U B

aV

p

b

form a covering of U .

It is partly the above circumstance which makes cohomology possible. The classical

example is the question:

Does the complex logarithm exist or not?

to which the well-known answer is “yes and no”. If X is a domain in the complex plane,

then
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CX C∗X
exp

is actually an epimorphism of sheaves. An epimorphism is a map whose image equals its

codomain, whereas “∃” is merely the subjective term for the objective concept of image. If

b is any never-vanishing continuous function, then a = log b would mean exp a = b. Since

the image = codomain holds, we say that equation is also true in the “internal logic” of X ,

and with great justice; however, the actual external existence is only on a covering of the

domain of b

V C

U C∗.

logV b

exp

b

If Étendue is defined to be the full subcategory of Top consisting of locally-spatial

toposes, whereas letting a monocat be any category, all of whose maps are mono (e.g. all

diffeomorphisms of opens of R4 into other opens of R4), then we have

groupoids monocats

Étendue

topsober

Top/S.
S( )op

sh

The inclusion of groupoids into Top/S is up to conjugacy “full and faithful”, whereas up to

sobriety, sh is full & faithful (and even 2-full and faithful if we remember the intrinsic ordering

on the points of any non-T1 space). Thus to see the original 1940 “exact sequence” of groups

and spaces as living in “spaces” we need only the milder generalization Étendue of top. Even

that is by no means fully exploited – for example, it seems to me that ergodic theory is largley

about “analysis in” a non-spatial étendue. However, Grothendieck wisely realized that the

broader generalization Top/S contains many examples of geometric relevance, particulary

“gros” examples like “all” of algebraic geometry (as opposed to a single variety).
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2. Linearized toposes as the base for homological algebra

The linearization Ab(X ) of any topos X , which is just the category of all abelian group

objects in X and homomorphisms thereof, is not only an additive category, but it is an

abelian category (Image ∼ Co-image) and moreover satisfies Grothendieck’s “AB5” axiom:

filtered (directed) colimits commute with finite limits (kernels). Thus if E p B is any

morphism of toposes, then its linearization Ab(E)
p∗ Ab(B) is a right exact functor which

has right-derived functors Rnf∗. In particular, the global sections functor B Γ S yields

abelian groups Hn(B, B) =
def

RnΓ(B) for any B ∈ Ab(B). In case B is the topos of sheaves

on a space, its cohomology so defined is just that of the space, whereas for the topos SG of

G-sets, we get the cohomology of the group G with coefficients in any G-module B! This

unification is even tighter, as sketched below.

Say E p B is a “fibration” if Ab(p∗) takes acyclics to acyclics. Then the spectral

sequence of the composed functor ΓBop = ΓE becomes the Leray spectral sequence

Hn(B, Rmp∗A) =⇒ Hn+m(E , A).

An important case is the following:

Let X be (the sheaves on) a connected, locally connected, semi-locally 1-connected space

and let Π1 be (the permutation representations of) the Poincaré group of X . Then there is

a map of toposes
X → Π1

whose inverse image is the inclusion of Π1-sets as the locally constant sheaves (covering

spaces). In particular, the self-action of Π1 is one particular “sheaf” on Π1, whose inverse

image is the “universal” object U . Then the “slice” topos X̂ = X/U is the (sheaves on the)

universal covering space of X , whereas Π1/Π1 = 1S (the category of sets) while the resulting

(unique) point of Π1 has the universal covering space as its pullback in Top
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X̂ 1S

X Π1.

p

Hopf’s discovery of the cohomology of groups in the context of topology is now seen as the

application of the Leray spectral sequence to this particular exact sequence which crosses

over between the two special subcategories of Top:

top

gps

Top/S.

sh(−)

(−)-sets

3. The bornological topos, Banach and Fréchet spaces

Linearization of gros toposes leads to functional analysis “rather than” algebraic topology. A

surprisingly simple example is the bornological topos B, defined to consists of all (contravariant)

functors Scop B S from countable sets which preserve finite products in the sense that

B(0) 1

B(I + J) B(I)×B(J).

∼

∼

Due to the distributivity of Sc, this simple condition is actually a “sheaf” condition, so that

B → SSopc

is a subtopos, with left adjoint ( ) particularly simple to compute

B(I) = limI1+···+In=I (B(I1)×B(I2)× · · · ×B(In))

as the direct limit over all finite partitions of any countable set I. Note that one may as well,

for “simplicity” replace Sc with (all endomaps of !) a fixed countable infinite set N . The

representable functor Nc ∈ B is “codiscrete” whereas the discrete “natural number object”

Nd has (Nc, Nd) = only the maps with only a finite number of values; thus Nd ⊆ Nc is
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infinitely smaller although they have the same points. In general Nc → X is a bounded

sequence in X and the main idea of a morphism X → Y in B is that it takes bounded

sequences to bounded sequences, i.e. is “bornological”.

If F is the category of Fréchet spaces (which includes Banach spaces and the even-more-

important Fréchet nuclear spaces as almost-disjoint subcategories), then the functor

F Ab(B)

F (I 7→ bor(I,F))

(where bor(I, F ) is the set of all bounded functions I → F ) is a full left exact embedding.

The following remark should dispel any lingering belief that functional analysis cannot be

considered to be an abelian category. The fact that mono-epis are isos in a topos or abelian

category such as Ab(B) only seems “non-topological” if we neglect that “epi” does not mean

just surjective on points. Indeed in our example an epi A B has the property

A

Nc B

that is, bounded sequences in B lift to bounded sequences in A, so that if A → B is also

mono and A,B are Banach spaces, then A→ B is a (linear) homeomorphism.

4. A “petit” topos such as an étendue is essentially a glorified

picture of a particular “space”

But even in the most elementary geometry the “situation” being studied actually involves

points, lines, surfaces, . . . and mappings between these, expressing incidence relations, midpoint

formations . . . . The category of all “set-valued continuous functions” X on such a situation

is a “gros” topos embodying an idea of spaces in general in one of its meatier incarnations.

X(1) = the “rational points of X, X(line) = paths in X, X(k) = k-valued points of X,
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where k is a finite, but not discrete, space of the type studied by Galois, X(D) = tangent

vectors of X in many examples. In each of those cases A = l, k, line, D, etc, one actually

has

X(A) = X (A,X).

On the other hand, the set X (X, line) is the ring of functions on X (or whatever algebraic

structures the line has in X ), and in many examples there is even an object Λn so that

(X,Λn) = differential n-forms on X. The last really uses the generality of the objects of X ,

since the “space” Λn is non-trivial even though it obviously has only one point! Writing R

for the line, we can exploit the fact that RX ∈ X to define

Distributions(X) = HomR(RX , R) RRX

.

Of course, all this functional analysis, harmonic analysis, etc. will be “algebraic” if X =

algebraic geometry as explained below, but there are also C∞ topos X as studied by Bruno,

Bunge, Dubuc, Kock, Lavendhomme, Lawvere, Moerdijk, Reyes, Wraith.

A well-known example of a gros topos is the category of simplicial sets, where since 1950

topology has used the nerve BG which has only one point. In other branches the method is

widely under-exploited. The role of gros topos is still not widely recognized.

The construction of a gros topos for geometry usually starts with the algebra

A = Cop

of maps between some basic generic figures and then finds

X SA

as the sheaves for an appropriate notion on A of covering. Perhaps the simplest example is

A = the category S of finite sets, where

C = SS
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is pretty thin on geometry, but does allow to formalize the intuitive notion with which we

started Section 1.

(Top/S)(X , C) = the category of all sheaves on X

' “objects in X”

for any S-topos X , so in particular the points of C “are” just sets

Pts(C) = (Top/S)(1S , C) = S.

Thus C ∈ Top plays the role like that of the complex numbers in top of representing the

“algebra of functions” on any X . If f is any object of X construed as a sheaf and x is any

point of X , then
1S X C

x f

represents a set fx which is the stalk of f at x if X is spatial; but we had to leave the

narrowly spatial Étendue to find C, even if we were only interested in this representing job

for spatial X .

Exercise: A point x of X = S∆op
(simplicial sets) is exactly any arbitrary linearly ordered

set with endpoints. If f is a simplicial set, what is fx?

Thus, like C, many “general” topos are “gros” in the sense that they have a large category

of points (not only of sheaves). However, this is not the distinguishing feature since, as I

explained in my 2005 Theory and Applications of Categories reprint, there is strong reason

to consider the category S∆op
1 of reflexive graphs (= 1-dimensional simplicial sets) as gros

even though it has only a finite category of points.

Now let k be any good Nötherian ring and let A be the category of all finitely generated

(hence finitely-presentable) commutative (associative, unital) k-algebras (or Z2-graded (anti)

commutative algebras if we want “super space” . . . ). The Yoneda embedding

Aop SA
( )
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will play the role of the (usually very involved to describe) spectrum functor, so we consider

only subcategories X of SA which contain A (so-called sub-canonical notions of cover). One

central example is the underlying-set-functor

A S
R

which is obviously a ring object in SA and we straight away consider that OX = X (X,R)

for any X. In X
R = k[t]

and for any A ∈ A which can be generated by n quantities, there are embeddings

A Rn

in X . Moreover

OA = A

and indeed for any X

OX = lim x∈Aop/X Ax

where Ax is the type of the (possibly singular) figure A
x

X of X.

If D = k(ε) where ε2 = 0, then D ⊂ R, but has only the one rational point 1 0 R in

D; nonetheless XD is the tangent bundle of X, with a map

XR ( )•
XD

from the space of curves in X. If v is any section of XD → X, then v induces a derivation

on OX (even on RX).

The “affine” variety such as y2 = x3 + 5 is simply the functor which assigns to every B in

A the set of all 〈x, y〉 ∈ B2 which satisfy the equation; the resulting object X embodies all

information about the variety, with no need to first calculate the unnatural conglomerate

“pts of X” = lim
k a field
k∈A

X(k)
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or the Zariski opens, or the sheaf of local rings on the petit topos. It is surprising that all

three of these ingredients are mandatory in the definition which still passes as “fundamental”

in textbooks (even though Grothendieck has himself advocated that it should be abandoned

in lectures here at Buffalo in 1973).

As for the Zariski opens themselves, they fit nicely as spaces into our gros toposes:

U = k[t,
1

t
]

is the functor that assigns to each A ∈ A the group of invertible elements of A. The inclusion

U R

is the basic Zariski open in that for any X
f

R (for example any f ∈ A in case X = A)

the pullback (inverse image)

Uf U

X R
f

is a basic open in X. One has Ufg = Uf ∩ Ug, but for a “reasonable” notion of union we

need to pass to a subtopos Z of SA known as the gros Zariski topos of k. Actually,

Aop F E Z G SA

are all four significant toposes for algebraic geometry; first we consider the simplest one

G which consists of all product-preserving functors. Just as with the countable sets in the

bornological example, it is the unusual distributivity of Aop which makes G so defined a topos;

unlike the bornological example G = SA0 is itself a full functor category, where A0 ⊂ A is

the category of those k-algebras satisfying
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0 6= 1

f 2 = f ⇒ f = 0 or f = 1.

The colimits in G differ from those in SA to the extent that A×B = A+ B is a coproduct

in G. The somewhat more subtle Z is defined to consist of those X in G which transform

U0 ∪ U1 R

into an isomorphism, where U0 = U and U1 is its translate from 0 to 1. The last generates a

good notion of covering so that Z too is a topos, now with even more colimits agreeing with

those in Aop. In fact in Z we have

Uf+g ⊆ Uf ∨ Ug

for any two functions on any space X, or equivalently that R itself is now a local ring in the

sense of the internal logic of Z. The image (in the sense of Z) of the characteristic map of

the basic open

U 1

R Ωb ΩZ

true

is not only a meet-semilattice classifying the basic opens, but there is also a distributive

(Joyal) lattice between Ωb and ΩZ which classifies the more general opens. In order to

classify locally-closed sub-“schemes”, consider the image in Z of K → ΩZ where K is the

Dedekind-Krull functor K(A) = all ideals of A, with the co-variant functoriality α 7→ B ·ϕ(α)

for any A
ϕ

B in A.

The étale topos E defines the further restriction that X transforms a map p into an

epimorphism if p satisfies that

ED BD

E B

pD

p
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is a pullback (i.e. p satisfies the hypothesis of the implicit function theorem) and also p is

surjective on points:
k′ E

k B.

e

p

b

“for all fields k in A and all b ∈ B(k) there is a field extension k′ in A and e ∈ E(k′) such

that pe = b modulo the extension”. F is defined similarly but using “faithfully flat” p. The

Grassmann manifolds mono(W,V )/aut(W ) for R-modules W,V are definable in all these

toposes, but the meaning of the quotient space involved in general depends on which. Group

objects in these toposes have very remarkable properties.

The 1989 version of this paper was created in a great hurry! Bill told me1 on a weekend

that he was planning to hand out a paper to the participants of the seminar on Monday; but

the paper did not exist yet. So he proceeded to write the paper by hand, and I typed the

pages as they were produced, on our typewriter. Then I drew the arrows, the Greek letters,

the displays. Bill read and changed some page that I typed again. Then we went to Kinko

to have 100 papers photocopied and collated. And on Monday he distributed them. (Very

fortunately, he brought one back home or we would never have known about this paper.) A

decade later he happened to see it, and he corrected it extensively. It looked pretty miserable

by then.

But now in 2025, our friend Francisco Marmolejo offered to reformat it. [He has our same

wish to get Bill’s unpublished papers out in the open, for some scientist to read, or some

student to study them, or for somebody to find a special nugget once in a while, to help the

science of the future.]

1His companion Fatima of 57 years.
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We very much appreciate Francisco’s keen eye for detail, his patience, his generous time, his

knowledge, and his persistence. Thanks Quico for your transformation of the old version into a

very beautiful, easily readable paper!

The Archive Family
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