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Abstract

Already before 1960, the profound innovation by Eilenberg and Mac Lane had inspired

further work that still plays a basic role in our present advances. I refer to the results of Kan,

Isbell, Yoneda, and Grothendieck. Grothendieck’s Tohoku article introduced the notion of

sub-object (still not grasped by many writers) and an emphasis on functor categories as a

key method of construction. Grothendieck’s elaborate construction of algebraic geometry,

via local ringed spaces, was rejected by himself already in 1973 in his Colloquium talk in

Buffalo; efforts to take that qualitative leap into account have so far been incomplete.

Although in the 1950’s Grothendieck was considered to be one of the leaders of functional

analysis, recent journalistic accounts of his career seem to view that as a youthful deviation

from his path to algebraic geometry. However, closer attention reveals that among his

several advances in functional analysis was his calculation of the dual space of a space of

analytic functions, specifically revealing it concretely as another space of analytic functions

on a domain complementary to the original domain of definition. The study of the shapes of

these domains led to a concentration on analytic geometry, where some of the first toposes

emerged (but NOT as ‘generalized spaces’). The close connection between compact analytic

spaces and algebraic spaces emphasized the contrast between the two realms with respect

to an implicit function theorem, leading to the other original class of toposes, namely the

étale, which constitutes a kind of generalized space, but not a localic one.

A serious re-elaboration of the history of Grothendieck’s career will be a necessary part of

the program to re-establish the foundations of geometry, in a way that is in accord with

Grothendieck’s basic insights, but that makes maximum use of recent clarifying advances.

Also helpful will be a more responsible use of the undefined term ‘generalization’.

I propose to continue the following dialog: ‘What is a Space?’ ‘A space is an object in a

category of spaces.’ ‘So what is a category of spaces?’

∗F. William Lawvere’s invited Special Lecture, CT Aveiro Portugal

June 16, 2015 – with Bill’s small revision.
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50 years ago, the first international category theory meeting took place in La Jolla, California.

In fact, part of that meeting moved to the beach, where an inspiring talk by Jean-Louis

Verdier introduced many of us to a new class of categories due to Grothendieck, writing on

a blackboard that had been brought to the beach for the purpose. Jon Beck began to draw

diagrams in the sand, and a lively and enthusiastic discussion started among the participants.

Jean-Luis Verdier suggested that these categories embody set theory, but Erwin Engeler and

I expressed doubt, because the description seemed to need a given external set theory to

parameterize families for the required colimits.

There are several important threads from that meeting that are still flourishing; for

example, the theory of enriched categories as presented by Eilenberg and Kelly, in particular,

the role of ‘cartesian-closed’ categories in geometry and logic. The thread I tried to capture

at La Jolla, namely, the increasing use of categories and functors as the language of abstract

mathematics, has continued for the last 50 years.

The explicit formulation of the principles of category theory in my paper is still in need

of improved axiomatization. I will be overjoyed when some young person responds to that

need. The recent disappearance of so many stalwarts from that epoch underlines the need

for coherent and correct history as a guide to the future. I want to continue the search

for such a history, focusing here on the concept of space. There is not just one concept of

space, but several categories of smoothness. (To avoid misunderstanding, I am not focusing

on Riemannian space or Space Time. Those important additional structures require spaces

as their domains of definition.) A common feature of spaces in these more or less smooth

categories I have called COHESION, indicating that the parts of a space ‘stick together’ and

‘hesitate’ to separate (as in American slang ‘I’ll stick around a bit, until I split”).

The great dialectical geometer Hermann Grassmann discerned the two main contradictions

in mathematics to be ‘continuous versus discrete’ and ‘equality versus inequality’. Because
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the term ‘continuous’ has had a particular mathematical definition for more than a century,

I will instead use ‘cohesive’ for this philosophical concept, but of course I will immediately

try to tame it with mathematical definitions. The dialectics of inequality/equality have

been rather thoroughly made explicit by mathematicians, on at least two levels: Hurewicz

(1935), Kan (1955) and Moore (1955), Quillen (1967), Gabriel & Zisman (1967), Heller

(1988), Grothendieck (1983 & 1989), Kan et al (2004), Maltsiniotis & Cisinski (1999 – to

the present), are some of the major contributions at the level of spaces.

Another level of the transformation of equality is codified in the notion of exact category

introduced by Myles Tierney in our Halifax Seminar in 1969; he proved that these categories

are a delinearization of Grothendieck’s notion of abelian category in the sense that abelian

groups in an exact category form an abelian category. This theory was expounded in the

book by Barr, Grillet, and van Osdol, as well as in Barr’s address to the 1970 ICM. Exact

categories embody the special property of ‘sheaf-theoretic images’ which can be expressed in

‘logical’ terms: Define the image of a map X → Y to be the smallest subobject of Y through

which the map factors. That definition expresses precisely the rule of inference of existential

quantification; but then to what extent does it express ‘actual existence’? In other words,

given Q → Y , a figure of shape Q in the codomain Y , to what extent does it ‘come from’

a figure in X via the map, assuming that Q → Y lies in the image so defined? Part of the

exactness property guarantees that there exists a covering P → Q of Q with an actual figure

P → X mapping to P → Q→ Y to the pullback of the given figure.

The other feature of exact categories is even more transparently about transformation

of equality: co-equalizers come from their kernel pairs and equivalence relations all arise

as kernel pairs. It is clear that the theory of exact categories has wide applicability. The

book by Barr, Grillet, and Van Osdol did much to popularize it, and the work of Carboni

and others very effectively used ‘the exact completion’ to adjoin appropriate co-equalizers
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to non-exact categories. Most of these works postulate the exactness properties as given

conditions on a category, as does Giraud’s characterization of Grothendieck toposes; part of

the significance of the postulation of function spaces and power objects is that the existence

of adjoint functors implies exactness without further postulation.

The idea of an opposition between a category of cohesive spaces and a category of

anti-cohesive sets also applies in particular to Cantor’s description of the relation between

a category of Mengen and a sub-category of Kardinalen. In fact, it appears that in general

the discrete is a co-reflective subcategory of the cohesive, with the co-reflection extracting,

as an Aristotelian arithmos, the Cantor ‘cardinal of X’ or the Hausdorff ‘points of X’. (The

sets of ‘lauter Einsen’ have isomorphisms, as do the objects in any category; the issue here,

however, is not to pass to isomorphism classes, but simply to extract the underlying discrete

aspect of each given space/Menge.)

The Grassmann dialectic develops further. The discrete subcategory is the negation of

an identical subcategory at the opposite end, with the same functor as reflection. That is,

the same category has insertions as two opposite sub-categories, the one illustrating that

the ‘lauter Einsen’ are totally distinct, but the other demonstrating that they are nearly

indistinguishable. More precisely, joint work with Mat́ıas Menni has shown that under very

general assumptions the co-discrete inclusion consists of the Boolean sheaves that any topos

has. However, for a category of spaces there is an additional adjoint to the sheafification.

This indicates a non-trivial restriction on that cohesive category, namely the existence of

that additional Cantor adjoint. Such restrictions serve as axioms for cohesion, which is our

proposed characterization of ‘Categories of Space’.

My use of concepts such as the Boolean sub-category reveals that I am convinced that

categories of space are most effectively modeled as appropriate toposes. One of the two

axioms for toposes, namely the existence of function spaces (the feature that has been
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called ‘cartesian closed’ since the Eilenberg & Kelly contribution 50 years ago) had been

recognized as fundamental by Hadamard and Volterra at the time of the 1897 ICM in Zurich.

Grothendieck in 1957 in his Tohoku paper emphasized that this property is essential. These

and many other reasons point to this operation as central to all branches of mathematics.

In order to achieve the function space property (in models of cohesion that are constructed

as categories of structures in a discrete base), the fundamental structure needs to have the

nature of figures and incidence relations, rather than of algebras of functions (which can

be recovered by naturality). In my 1997 Palermo paper [7] I attempted to explain this

necessity. Like the 1965 paper by Eilenberg & Kelly, and like publications by Steenrod,

Kelley, and Brown, which mentioned as an important example the k-spaces based on using

compact spaces as figure types. However, none of us authors mentioned the actual origin of

the k-spaces, of which I learned later on the phone from David Gale (when following up his

1950 publication in the Proceedings of the AMS). Namely, Witold Hurewicz in his Princeton

lectures in the late 1940’s introduced the notion of k-space. In fact, in the early 1940’s,

Hurewicz had emphasized the need (which led to the partial solution by Ralph Fox in 1945)

for the case of convergent sequences as figures. Hurewicz did not speak explicitly in terms

of categories, but in the exponential laws that he demanded one immediately discerns the

feature of adjointness.

It is striking that Hurewicz, who in 1935 had initiated fundamental advances in the

study of the Grassmann transformation of inequality into equality, made also fundamental

contributions to the development of the other Grassmann transformation between continuity

and discreteness. Important were his well-known contributions to dimension theory (which

already made use of function spaces in 1941), but also his less cited contribution to the

recognition of the fundamental role of function spaces in general. Had it not been for the
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temptation of the Pyramid at Uxmal1, he would have shown us more of the relation between

the two Grassmann principles. From nuclear spaces to derivateurs, Alexander Grothendieck’s

work has immensely illuminated that Hausdorff’s great book ‘Mengenlehre’ was actually

about topology (which is an important product of the study of cohesion), illustrating again

the opposition and mutual transformation between cohesion and discreteness, as approached

in his work about chaos under the pseudonym ‘Paul Mongré’.

A remarkable aspect of the continuous/discrete dialectic is that the abstract sets of ‘lauter

Einsen’, abstracted from the cohesion of spaces, can reciprocally act as the basis, via specific

diagrams in their category, for structures constituting models of all sorts of mathematical

objects, including in particular the spaces themselves.

As a criterion for the adequacy of our axioms, Myles Tierney and I insisted on the proof

of the Grothendieck constructions of sites and sheaves. Radu Diaconescu [1] published that

proof in 1975 as a necessary preliminary to his proof of change of base for toposes. That is, for

a geometric morphism E → U satisfying a boundedness condition, E can be reconstructed,

by a zigzag of three geometric morphisms, from a site internal to U : the first leg is the

local homeomorphism given by the slice topos over an object of U that parametrizes the

objects of an internal category, the second is given by the left-exact comonad that adjoins

the ‘presheaf’ action of the maps of that internal category, and the third is the full inclusion

of sheaves for a localness operator. (Each of the three is a special case of a distinct important

general closure property of the class of toposes.) For such a ‘U -Topos’ E , the U itself can

be any elementary topos, re-enforcing Grothendieck’s observation concerning the ubiquity

of the powerful principle of relativization; it need not be an inaccessible universe, as in

1“Last September 6th, (1956) was a black day for Mathematics, for on that day there disappeared as
a consequence of an accidental fall from a Pyramid in Uxmal, Yucatan, Mexico, Witold Hurewicz, one of
the most capable and lovable mathematicians to be found anywhere.” From Salomon Lefschetz – (Witold
Hurewicz in Memoriam, June 29,1904-Sept 6, 1956).
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Grothendieck’s original SGA4 examples; nor need it be the discrete part of a cohesive topos,

as emphasized here. For each topos U there is the 2-category Top/U of U -toposes; indeed,

varying U may simplify the treatment of certain problems.

The 1959 Warsaw lecture by Saunders Mac Lane in effect introduced the idea of enriched

category, in its special case of ‘locally small category’. As a reflection of the Bernays class/set

distinction, the belief developed that categories that are not locally small are ‘illegitimate’.

I suggest the following alternate point of view.

Within the metacategory of categories, there are monoidal closed categories and hence

other categories enriched in them. This shows the need for the existence of an actual

category called the category of small sets, within the cartesian closed metacategory of all

actual categories. The functor category of any two actual categories should also be actual,

although of course properties like local finiteness will not be preserved. Potential categories

(corresponding to subcategories of that metacategory) may or may not have actual categories

that represent them up to equivalence. One of the main goals of abstract mathematics is

to illustrate and use the mutual transformation between space and quantity. The spaces

and quantities of primary interest are ‘small’, so it is reasonable to define small sets to mean

those satisfying the Banach-Isbell duality and to postulate that there is an actual category U

representing that notion of smallness. This postulate now seems to be one of the reasonable

amendments to my 1965 La Jolla attempt to summarize in axioms the key useful features of

a metacategory of categories. So functor categories of actual categories may not have small

hom sets, but they are actual and thus subject to all the properties of actual categories in

general.

What I have said so far has been profoundly influenced by the work of Alexander

Grothendieck. Let me now touch on his contributions specific to the problem of Space

as I have outlined it. It is often said that he invented toposes as domains for cohomology
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and that they were a ‘generalization’ of topological spaces. But already in 1960 he was

defining and using categories in complex geometry that were toposes even if not explicity

so called. His famous Médaille en Chocolat exercise (in SGA4) is, as I told him, a key

to the whole theory and application of toposes; he agreed, obviously pleased that someone

had noticed. There he explains a version (in terms of sites) of the relationship between

the gros topos of a space and a petit topos of the same space; the spaces in question are

taken from a category of spaces which could only itself be the gros topos of a point. It is

still an ongoing exercise to clarify the qualitative distinction between the kinds of toposes

that appear as ‘gros’ or as ‘petit’ in this kind of situation, that is, between categories that

represent a general determination of cohesion and categories that consist of variable sets as

parametrized by some sort of generalized space. The generalized spaces would include the

étale spaces discovered by Grothendieck.

What was the undesirable feature, of the earlier Dieudonné-Grothendieck foundation of

schemes, that Grothendieck so emphatically rejected in his 1973 Buffalo colloquium lecture?

Hurewicz and others had already seen that the contravariant structure was problematic,

but in the notion of local ringed space, that structure was further dissected in two interacting

components, open sets and sheaves of local rings. In hindsight, problems could have already

been discerned from Serge Lang’s 1960 review of EGA. There, Lang is enthusiastic about

the fact that so many classical concepts can be subsumed under base change; he is also

enthusiastic about Grothendieck’s virtuoso proof that such fibered products actually exist.

Indeed from the point of view of us less able calculators, a virtuoso was required to take the

separated ingredients and re-assemble them into similar ingredients for a product scheme;

in particular, the underlying topological space does not underly the product scheme. What

was the nature of Grothendieck’s solution?

In a topos of set-valued functors on the category of finitely-presentable algebras, each
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space X has, thanks to Yoneda, an ‘inside’ whose objects are (in general singular) figures

of representable shapes, with incidence relations given by commutative triangles. This can

be viewed as a discretely-opfibered category, but such is equivalent to a set-valued functor.

[I disagree with the term ‘functor of points’ for this, because it is a functor whose actual

values include all the figures of X.] Of course, ‘points’ of some other space associated to

X may represent figures in X, but for X itself the points of it are just the restriction of

X to the category of finite field extensions. That category generates the Boolean part of

the big topos. The usual definition of point is unwieldy because it amounts to taking the

non-exact direct limit of that restricted points functor. In general, this Boolean topos is

much better suited than the category of abstract sets to serve as ‘base topos’ in the case

of non-algebraically closed ground field. Conflating ‘figures in X’ with ‘points of X’ has a

sort of science fiction air he probably did not intend. Volterra called them ‘elements’. A

better version of the ‘underlying topological space’ is internal to the Barr-Boole-Galois topos

where the actual points functor lands; this choice is also necessary for a product preserving

components functor.

Between the Galois site for the Boolean part and the site for the whole category of

spaces, there is the category of algebras that are finite-dimensional over the ground field;

because the corresponding representable spaces are the domains of the crucial infinitesimal

figures in X, we may call it a Leibniz site. Grothendieck and his colleagues emphasized the

importance of these figures in connection with tangent bundles, étale maps, and so on. Two

strong properties of this category in relation to the much bigger category are the following:

The general figure shapes Y from the big site have the Birkhoff property relative to the

inclusions L(X) → X of the Leibniz core of any X; namely Y perceives these inclusions

as epimorphisms in the sense that an infinitesimal map L(X) → Y can be integrated in at

most one way to a map X → Y . (This means that the algebra of Y -valued functions on

X is a subalgebra of a product of special very small algebras.) The other strong property
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(which has traces in Euler) is that any subtopos of the whole which contains the Leibniz

objects will contain all the objects Y of the big (affine) site; this follows from the fact that

there are enough infinitesimal function spaces to generate that big site, for example, the line

is a retract of the self-exponential of the dual numbers domain. One can easily extract the

subcategory of locally affine spaces i.e. algebraic schemes.

The above outline of a topos of Grothendieck algebraic spaces over a base field seems to

work as well for a base rig. It was shown in detail to work for smooth geometry by Wraith,

Kock, Reyes, Moerdijk, Bunge, Dubuc, Gago, Lavendhomme, and others. Some version is

likely to work also for analytic geometry. Indeed, the field of complex analysis/geometry

is much advanced since 1960 and should have many topos implications and clarifications.

For example, the relation between the Grauert direct image theorem as a relativization of

its special case by Cartan-Serre should be clarified by explicit topos-relativization. When

I proposed that to Grothendieck, he allowed that it is interesting, but pleaded insufficient

expertise in logic to carry out a proof. More recently, the study of Brady-hyperbolic spaces

has a very strong topos flavor that has not yet been made explicit (as far as I know).

Grothendieck made an important contribution to what he called ‘tame topology’. He

gave no general definition, but urged2 the discovery of suitable categories that would not

contain certain old pathologies that come up again in cohomology. In my view objects

such as space filling curves should have led to a ‘criticism of foundations’ more central

than the so-called paradoxes; however, they were apparently simply tolerated for many

decades, with the resignation that complication is inevitable. But Grothendieck boldly

proposed using accumulated knowledge to construct less pathological categories that would

still suffice for mathematical work. He arrived at a proposal involving piecewise real-analytic

functions. Meanwhile, logicians including Wilkie, Pillay, MacIntyre, and van den Dries, had

2as I had urged in my 1977 Milan lectures.
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been pursuing a related problem of Tarski, phrased in terms of decidability. They solved it in

1986, also finding ‘piecewise real analytic’ to be a key ingredient, although by no means the

only one. These logicians came to recognize Grothendieck’s work as being related to their

own. It is to be expected that conversely the work of their o-minimal school will illuminate

the deeper study of cohesive space.

As the work of Grothendieck illuminated and advanced the work of Cantor, Grassmann,

Volterra, Hausdorff, Hurewicz, Galois, Kan, Eilenberg & Mac Lane and inspired and gave

impetus to our whole community, I am hopeful that it will continue to inspire and guide the

science of many students of future generations.
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The talk by F. William Lawvere was given as an invited Special Lecture at the Category

Theory Conference, CT Aveiro, held in Portugal, in June 2015.

Our belated thanks go

to Walter Tholen and Dirk Hofmann for inviting Lawvere to the Conference, and

to Mat́ıas Menni and Francisco Marmolejo, for their steadfast support of his work.

We thank Francisco Marmolejo for latexing this paper and for transforming

everything into a readable and beautiful whole.

The Lawvere Archive - The Family

1. Grothendieck’s well-known public lectures in Buffalo in 1973: From audio recordings

of these lectures, Federico Gaeta published (in 1974):

‘Alexander Grothendieck, Introduction to functorial algebraic geometry’, part 1.

Grothendieck’s audio recordings are available, and have been transcribed.

2. Grothendieck’s Colloquium Talk, which was separate from the above lectures: At

some time later, Grothendieck gave a Colloquium talk at the University at Buffalo

Mathematics Department: Lawvere was visiting Montreal, but he and colleagues took

a short flight from Montreal to Buffalo to hear Grothendieck’s Colloquium talk.

a) Note that Lawvere did not assume his position at Buffalo until the following year,

September 1974.

b) There exist no written notes, nor audio recordings for Grothendieck’s Colloquium

talk.
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