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Abstract

Formal theories of higher types need to be augmented to permit treatment of some additional
right adjoints which arise in mathematical practice. The concomitant mathematical scrutiny of
supposedly well-established left adjoints resurrects a “critique of foundations” which may not be
irrelevant for practice. Categorical methods based on mathematical experience with the diversity
of toposes allow us to address such problems without getting entangled in sterile ontological
debates.
c© 2004 Elsevier B.V. All rights reserved.

An important categorical contrast is the re4ection of objective qualities into quan-
titative algebra by means of the Steiner–Cantor–Burnside–Grothendieck–Schanuel ab-
straction process which replaces a category with its set of isomorphism types and
simultaneously replaces adjoint functors with appropriate operations such as addition
and multiplication. When products distribute over coproducts in a category of spaces,
a rig structure is obtained which receives useful invariants of the spaces, as shown by
Schanuel [13] and others. (The short-term “rig” is intended to replace the unwieldy
“commutative semiring with 1”; note that one can adjoin to rigs a negative operation
(= “n”) to obtain rings, using the left adjoint to the obvious inclusion functor.)
Often adjoint functors beyond addition and multiplication can be taken into account

as operations. Among the many reasons for seeking invariants that help to survey the
complicated diversity of categories of spaces is the proposal that such categories might
also serve as theories of data types. In order to bring that proposal closer to serving
as a guide to actual data processing, such additional operations might play a role.
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1. “Constructive” left adjoints

Operations of the kind 1/1-A are inexplicably described as merely formal in some
computer science literature. But that overlooks the availability of perfectly rigorous
treatment of distributive categories, of rigs, and of the relation between them. Solutions
X of “equations” like

X = 1 + A× X
can be studied in terms of given isomorphisms in appropriate distributive categories.
Such isomorphisms functorially induce further isomorphisms

X = 1 + A+ A2 + · · ·+ An + En
for any given n. Thus any solution of the equation is an idealized model of “lists
in the alphabet A”, to the extent that if we take n large enough and make no special
assumption about the inFnite error term En=An+1 ×X , we might be able to draw some
conclusions about actual Fnite lists.
However, the 20th century tradition was to go far beyond this mild idealization by

making the very strong assumption that the solution X is a smallest one, in the sense
of the universal mapping property of the left adjoint on the given category to the
forgetful functor from A-automata in the same category. Those who are overawed by
the mythology of constructivism might believe that this way of determining a preferred
solution of the equation is the “simplest”. (A special case is the uncritical acceptance
of the term “natural” for an alleged object that contains “exactly” 0; 1; 2; 3 : : : .) As is
implicitly well-known, minimality is not so much a question of “inFnity” or “size” but
rather of the availability of suHciently complicated means X →Y to show that X is
indeed “smaller” than any 1 + A×Y →Y . In other words, this particular sort of left
adjointness generates one very complicated category which promises all the recursion
anyone will ever want to do. But, in practice, one wants to do only a certain class
of recursions; why not accept many thinner categories and their relations as a more
accurate model than a single super complicated one?
The computers of any generation, no matter how advanced, will (beyond some n)

have no direct information about the lists in the error term En, nor any way of dealing
with them. This sort of consideration suggests that determining X as “generic” rather
than as minimal might be more accurate; or in other words we might minimize proper-
ties rather than “size”. The convenience of objectifying subjective inFnity can be had in
a more controlled fashion. Schanuel’s polyhedral spaces [13] demonstrated that in the
case A=2, great simpliFcation can result. I conjectured that the same would be true for
the nonlinear tree equation X =1+X 2 just on the basis that I could functorially deduce
from it that (like the sixth root of unity) X 7 =X , but could not show, for example,
that X 3 =X ; then Blass [1] was able to show that in the generic case there really are
no perfect parameterizations of tuples of trees by trees except for the rig-theoretically
“obvious” exponents like 7. The precise meaning of “generic” is actually also a left
adjoint, but in a certain 2-category, where the answer is a much thinner category: one
considers all distributive categories equipped with a chosen object and a chosen iso-
morphism making the object a solution of the equation in question, these categories



F.W. Lawvere / Theoretical Computer Science 316 (2004) 105–111 107

being compared by appropriate functors. Gates [4] generalized and systematized the
work of Schanuel and Blass, by considering Fxed points for polynomial functors of all
degrees.
As I pointed out in 1964 [8], the usual properties of recursion follow just from

the universality associated with a left adjoint. In general, pure algebraists fruitfully
imagine that such free algebras really exist, but the actual computer manipulation of the
symbols involved in the presentation of algebras may be better modeled by categorical
relations that are diCerent from left adjointness. As workers in the O-minimal theory
of real analysis [10] have noted, the so-called “natural” number object is the basis of
many constructions and statements (such as Peano’s space-Flling curves and GLodel’s
incompleteness theorem) whose interference in the pursuit of geometry and analysis
can actually be partly avoided.

2. Exponentiation in categories and rigs

Let us instead consider right adjoint operations. The most important are the ex-
ponentials which in particular objectify higher types. Implicit for centuries, they be-
came more explicit with Volterra’s theory of functionals and still more explicit with
Hurewicz’s deFnition of the k-spaces that he needed for homotopy theory. DeFni-
tions given by Hurewicz in his 1948–1949 lectures at Princeton were used by Gale
[3]. Apparently, independently of those mathematical developments, combinatory log-
ics were developed. Kan pointed out that exponentials are characterized as right
adjoints; this fact was used axiomatically in the 1963 treatment of the category of
categories [7]. When Eilenberg and Kelly systematized the theory of general closed
categories in 1965, they noted the important special cases in which the tensor prod-
uct is the intrinsic categorical product, traditionally called the “cartesian” product.
Thereafter, categories with exponentiation have often been called “cartesian closed
categories”.
Categories with (sums and products and) the property that exponentials exist give

rise, by the abstraction process, to structures which could be called exponential rigs.
These satisfy what Tarski called the “High School Identities” and also carry a partial
ordering induced from the existence of retractions in the category. (Tarski excluded 0,
but here we include it and assume 00 = 1.) Tarski asked whether the category of
Fnite sets is generic for that theory. In recent years his question has been answered
negatively. However, the counterexamples do not seem to shed much light on the
questions: “Which exponential rigs arise objectively?” and, in particular, “Which arise
from Dedekind-Fnite toposes?” There are many such toposes of Dedekind-Fnite objects
that are quite concrete, namely the “Fnite toposes” of Fnite-set-valued presheaves on
(=actions of) a Fnite category; the answer is not obvious because the exponentiation
(in spite of being intrinsic), is not preserved by the natural comparison functors between
examples (except in the case of group actions).
In an inFnite realm, Dana Scott showed over 30 years ago that there are many

exponential rigs satisfying the Alonzo Church-inspired condition that for any x such
that 16 x, there exist y such that x 6 y and yy =y. Indeed, he actually proved the
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much better result that such rigs can arise objectively, i.e. by abstraction from suitable
cartesian closed categories.

3. Amazingly tiny objects

There are still other relevant kinds of right adjoints, to which formal methods might
be applicable. Two of these arise in connection with diCerential calculus; one involves
representing the tangent-bundle functor, which is the most basic functor on smooth
spaces. Since the object that represents a given functor is unique, the “amazingly tiny”
object T that represents the tangent bundle of X as the exponential X T deserves close
study. It has the following rare property: one of the key virtues of objectifying higher
types (i.e. of working in a cartesian closed category) is of course that we can treat as
mere maps the “functionals of arity A from X to Y ′′

X A → Y

and hence compose these with other maps on either side; but in very special cases, such
as A=T , the same information in those functionals can be represented as functions on
X itself (with values in a more richly structured object)

X → Y 1=A:

This possibility does not seem to have been contemplated by combinatory logic; the
formalism should be extended to enable treatment of so basic a situation. Note that the
existence of this exceptional right adjoint implies that ( )T itself is the inverse image
for a geometric morphism and hence for any positive structure carried by an object
R; RT will have the same structure. (However, RT will not necessarily share nonposi-
tive properties (i.e. the properties whose expression requires universal quantiFcation or
implication within the hypothesis of an inference) with R, contrary to the postulate of
nonstandard analysis.)

4. Central idempotents

Another additional right adjoint exempliFed by diCerential calculus is actually also
left adjoint and indeed to the same functor. More precisely, a cartesian closed cate-
gory might have a “central idempotent”, i.e. a natural transformation � from the iden-
tity functor to itself, each instance of which is idempotent. Then the subcategory of
“�-discrete” objects where this idempotent is the identity endomap will be both re4ec-
tive and core4ective; in a broader context we might speak of “connected components”
and “points” of any object as given by two special functors into the subcategory, but
here these two are isomorphic. How can such a situation arise?
For example, if we divest smooth spaces of all global cohesion, keeping only the

jets (on which the Thom–Mather singularities depend), we obtain a category in which
every connected component of any object has exactly one point, so that the natural
map between those two functors is an isomorphism. Of course, the result of splitting a



F.W. Lawvere / Theoretical Computer Science 316 (2004) 105–111 109

central idempotent does usually not give a “fully discrete” cartesian closed category (i.e.
abstract sets); for example, in inFnitesimal algebraic geometry (over a non-algebraically
closed Feld K of characteristic zero, i.e. presheaves on the opposite of the category
of Fnite-dimensional local K-algebras) the nature of the point inside an inFnitesimal
component varies in the way studied by Galois.
Another very important example is the homotopy category constructed by Hurewicz.

It is again a cartesian closed category carrying a central idempotent because the basic
construction involves taking the path-components of an arbitrary space and considering
them as “points” of the homotopy type of the space, and (due to the self-transitive
nature of the continuous interval which parameterizes homotopies) this “points” func-
tor not only remains left adjoint but becomes right adjoint too, to the same
inclusion.
There is evidently a large, mostly unexplored, area concerning the cartesian closed

categories that can be mapped to or from the spatial ones but that enjoy such fur-
ther simultaneous right adjoints; although again this possibility does not seem to
have been contemplated by combinatory logic, some of those adjoints are relevant
to data transformation and to the qualitative features of the data that we need to
transform.

5. Functional analysis versus “natural” numbers

Contrary to the uniqueness suggested by the term, “the” �-calculus, there is still a
vast variety of cartesian closed categories to be understood. In a topos we can construct
the exponential spaces as in set theory from the power types. The power types also
permit, by the Dedekind–Freyd inFnite intersection method, the construction of natural
number objects (and other left adjoints, such as minimal list models) given only the
geometrical datum of a non-Dedekind-Fnite space. But such a geometrical datum could
certainly belong to a cartesian closed subcategory which does not contain that extreme
subobject. More generally, any category with products, for example a model of O-
minimal analysis, can be embedded in a cartesian-closed category. Indeed from [9]
one can see that both
(1) the intrinsic meaning given by Volterra and his students to “analytic functionals”,

like the Hadamard deFnition of multi-dimensional smoothness rediscovered by Bo-
man and extensively used by FrLolicher, Kriegl, and Michor in inFnite-dimensional
smooth analysis [6], and

(2) the Banach–Mazur notion of recursive functional, later further developed by Ersov
and by Mulry [12] (see also [2]), are essentially contained in the Yoneda–Cayley–
Dedekind tautological method of obtaining cartesian-closed embeddings. Of course,
one virtue of that method is that the category obtained is actually a topos, but
if one wished to avoid the power types, one could simply take exponentials of
exponentials.... of representables inside such a topos.

There is a philosophical interpretation of the Dedekind–Freyd construction: The
“mild” objectiFcation of the subjective (involved in the postulation of a truth-value
object) almost implies (if we use its full universal property) the stronger objectiFca-
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tion of the “completed” subjective process (i.e. the bad inFnity that the O-minimal
theory of the continuum manages to avoid). Can O-minimal models be embedded
into cartesian-closed categories without introducing the left adjoints like the Dedekind–
Lawvere N? Since that question probably does not have a simple yes-or-no answer,
I will consider it in some other aspects below.
Given any commutative ring object R we can always construe R2 =R[i] as a new

ring with complex multiplication, inside of which there is the multiplicative subgroup
S1 corresponding to the circle. If we are in a cartesian-closed category, we can form
the subspace Z =Hom(S1; S1) of (S1)(S1) consisting of homomorphisms; since S1 is
an abelian group, Z is a ring. That ring is usually considered to be “the integers” when
R is in some sense a one-dimensional continuum. However, there seems to be nothing
in this entirely right-adjoint construction to imply that Z satisFes any left adjoint sort
of universality such as a suitable version of Dedekind universal recursion. For example,
Moerdijk and Reyes [11] Fnd that the Z arising from the smooth reals (the PoincarRe
group of S1 and hence the appropriate coeHcient group for homology in a smooth
category) is not the usual discrete N [−1] but rather has itself some residual smoothness.
Which automorphisms of objects are tame enough to admit iteration parameterized by
Z? Does the existence of Z or similar objects entail in some indirect way the existence
of N?
Because the category S of abstract sets is not a universal arena, but merely a useful

auxiliary tool for the study of continuous space and motion, it is possible to sepa-
rate the roles of objective and subjective inFnity even more consciously than Cantor
and Dedekind did. A topos T can be generated over S by a geometrical subcat-
egory C which idealizes the objective inFnity of time and space intervals; T will
then also contain the idealizations N and � of subjective inFnity which “objectify”
recursion and truth. However, N and � need not belong to C, as shown by Tarski’s
real semi-algebraic geometry and its later developments which study T→O as exten-
sions of a known decidable theory O. Note that N ⊆R ∈ C does not imply N ∈ C;
even though any subobject of R is an equalizer in T, it may not be possible to Fnd
an equation R � C deFning it in C itself. The striking geometric property of C is
that every space in it has only Fnitely many connected components, even though C
is closed under equalizers. Thus the question becomes: “How much analysis can be
done in C?” (Here we refer, of course, to analytic geometry, diCerential equations,
etc., rather than to realms such as abstract measure theory whose very foundations in
the 20th century became so deeply intertwined with the “completion” of subjective
inFnity.) The line of investigation based on the idea that a one-dimensional part T1

of T is equivalent to O has led to richer and richer C. The question posed here is:
“Can we tame [5] some form of functional analysis as well, i.e. can C be cartesian
closed?”
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