
Algebra univers. 49 (2003) 35–49
0002-5240/03/010035 – 15
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On the duality between varieties and algebraic theories

J. Adámek, F. W. Lawvere, and J. Rosický

Abstract. Every variety V of finitary algebras is known to have an essentially unique
algebraic theory Th(V) which is Cauchy complete, i.e., all idempotents split in Th(V). This
defines a duality between varieties (and algebraically exact functors) and Cauchy complete
theories (and theory morphisms). Algebraically exact functors are defined as the right
adjoints preserving filtered colimits and regular epimorphisms; or, more succintly: as the
functors preserving limits and sifted colimits.

Introduction

A variety of algebras has many equational presentations, and this has led the
second author in his dissertation [Law1] (see also [Law2]) to propose a categorical
approach in which a presentation-independent description of a variety V via an
algebraic theory T is considered: T is a small category with finite products such
that algebras of V correspond to models of T , i.e., functors in SetT preserving finite
products. And homomorphisms of algebras correspond to natural transformations
of models. More precisely, the category V is equivalent to the full subcategory

ModT
of SetT of all models of T . In the classical case of one-sorted varieties, T is
generated by a given object K, i.e., objects of T are powers Kn (n ∈ ω), and
evaluation at K gives a forgetful functor

ModT → Set.

An important feature of the mentioned equivalence V ∼= ModT is that it is con-
crete, i.e., commutes with naturally defined forgetful functors (up to a natural
isomorphism). For the readers’ convenience we recall this approach briefly in Part I
of the present paper.

If a variety V is viewed as an abstract category, i.e., without reference to under-
lying sets and mappings, algebraic theories need to be equipped, not with a given
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object K, but with a different additional structure in order to obtain their essential
uniqueness, because every non-trivial variety has many (non-equivalent) algebraic
theories. For example, the variety Set of algebras with no operations is equivalent
to ModT where T is the full subcategory of Setop whose objects are all natural
numbers. But it is also equivalent to ModT ′ where T ′ is the full subcategory
of Setop whose objects are just the even numbers (and T ′ is not equivalent to T
e.g. because T ′ is not Cauchy complete). The additional structure on T which
remedies this lack of uniqueness is as follows: the algebraic theories T are to be
required to have split idempotents (or, shortly, be Cauchy complete), i.e., given
f : X → X with f2 = f there exist e : X → Y and m : Y → X with f = me and
idY = em. We are going to prove that every variety has a canonical algebraic theory
which is Cauchy complete, and each pair of Cauchy complete algebraic theories is
equivalent. This fact has already been noticed by Gabriel and Ulmer [GU, 11.10],
Dukarm [D] and Borceux and Vitale [BV].

We introduce here the category of all varieties, whose morphisms are called alge-
braically exact functors (to be distinguished from the usual concept of an algebraic
functor, see e.g. [B, Vol. 2.], which is not meaningful here. Algebraically exact
functors turn out to be precisely the functors between varieties which are induced
by morphisms of their theories. A full characterization of these functors is presented
in Part III: they are the right adjoints preserving filtered colimits and regular epi-
morphisms. Then in the last part we prove a duality between the 2-category VAR
of all varieties and the 2-category TH of all Cauchy complete algebraic theories.
The duality closely follows the well-known Gabriel-Ulmer duality between locally
finitely presentable categories and left exact theories (small categories with finite
limits), see [GU]. It is interesting that none of the authors who have observed the
above existence and uniqueness of Cauchy complete algebraic theories pursued this
any further, thus, the duality presented here seems to be new.

A detailed description of the algebraic theory T considered for a variety V (as
a concrete category) in [Law1] is: T is the full subcategory of Vop whose objects
are all V-free algebras on finitely many generators. A detailed description of the
canonical algebraic theory is: T is the full subcategory of Vop whose objects are
all finitely presentable regular projectives, or, equivalently, all retracts of all V-free
algebras on finitely many generators.

Acknowledgements. We are grateful to Peter Johnstone for pointing out the
paper [L] of C. Lair to us and suggesting “sifted colimits” as a translation of
“tamisante” used there. We acknowledge fruitful discussions with Cristina Pedic-
chio and Richard Wood which helped us to understand the importance of reflexive
coequalizers.
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1. S-sorted algebraic theories

Let V be a variety of finitary, one-sorted algebras. We consider V as a category
whose morphisms are all homomorphisms and we denote by

UV : V → Set

the natural forgetful functor.
In the dissertation [Law1] an algebraic structure of an (arbitrary) functor U : A →

Set is defined as the algebraic theory T (U) whose objects are finite powers Kn

(n ∈ ω) of a given object K, and morphisms from Kn to Kk are natural trans-
formations from Un to Uk. (Thus, in case of a variety A = V , and U = UV , a
morphism σ : Kn → K in T (UV) assigns to every algebra A ∈ V an n-ary operation
σA : An → A preserved by all homomorphisms — all such can be represented by
terms in V of n variables. And a morphism from Kn to Kk is a k-tuple of terms in
n variables.) The composition of morphisms in T (U) is just the usual horizontal
composition of natural transformations (and corresponds to the clone composition
in case of a variety). It is obvious that the object Kn is a product of n copies of
K in T (U) with projections corresponding to the n projections Un → U . Thus,
T (U) has finite products, and is equipped with a product-preserving functor K−

from the dual of the category of finite sets to T .
Every object A ∈ A defines a model M(A) of the theory T (U), i.e., a functor

from T (U) to Set preserving finite products, as follows: M(A)Kn = U(A)n and
M(A)σ = σA : UnA→ UkA for all σ : Un → Uk. Further, every morphism f : A→
B in A defines a natural transformation M(f) : M(A) → M(B) with M(f)Kn =
Unf . This establishes a “comparison” functor M : A → ModT (U). Moreover,
ModT (U) is equipped with a forgetful functor

U : ModT (U)→ Set

of evaluation at the object K, i.e., UM = MK for every model M , Uf = fK

for every natural transformation f : M → M ′ in Mod (T (U)). And the following
triangle

A M ��

U

���
��

��
��

� ModT (U)

U������������

Set
commutes.

The crucial result of [Law1] is the following

Theorem 1.1. (1) If A is a variety of finitary, one-sorted algebras then M is an
equivalence.
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(2) If M is an equivalence then A is concretely equivalent to a variety V of finitary,
one-sorted algebras (i.e., there exists an equivalence E : A → V with U ∼=
UVE).

Remark 1.2. (1) For a variety V denote by FV : Set → V the V-free algebra
functor, i.e., a left adjoint of UV . Then the algebraic theory T (UV) is equivalent to
the full subcategory of Vop whose objects are the free algebras FVn (n ∈ ω). In
fact, a homomorphism from FV1 to FVn is just an element of UVFVn, i.e, a V-term
of n variables — and this is precisely a morphism from Kn to K in T (UV). And,
more generally, homomorphisms from FVk to FVn correspond to k-tuples of terms.

(2) Morphisms betweeen (finitary, one-sorted) varieties are often taken to be the
algebraic functors (see [B]), i.e., precisely the concrete functors. Observe that since
the forgetful functor of a variety creates

(a) limits,
(b) filtered colimits,

and

(c) regular epimorphisms,

it follows that every algebraic functor preserves and creates (a) – (c) as well.

Let us further note that given varieties V and W , every functor

H : T (UV)→ T (UW)

which (a) preserves finite products, and (b) is the identity map on objects, gives
rise to an algebraic functor

H : W → V

corresponding to the functor ModT (UW) →ModT (UV) of precomposition with
H (i.e., M �→ M · H for models M of T (UW)). And every algebraic functor is
naturally isomorphic to one of this form.

Examples of algebraic functors: the forgetful functor UV , the functor Rng → Ab

which forgets the multiplication of rings, or more typically, the functor Rng → Lie

given by the commutator bracket.
For many-sorted algebras, as introduced by Bénabou [Be] and Birkhoff and Lip-

son [BL], the situation is completely analogous. Given a functor U : A → SetS

(where S is a set of “sorts”), denote by Us : A → Set the s-component of U for
s ∈ S. The S-sorted algebraic structure of U is the algebraic theory T (U) whose
objects are finite products of given objects Ks (s ∈ S), and whose morphisms from
Ks1 ×Ks2 × · · · ×Ksn to Kt1 ×Kt2 × · · · ×Ktk

are natural transformations from
Us1
V × Us2

V × · · · × Usn

V to U t1
V × U t2

V × · · · × U tk

V . Composition is the horizontal
composition of natural transformations.
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Now let V be a variety of S-sorted algebras and let UV : V → SetS be the nat-
ural forgetful functor. Then T (UV) has as morphisms tuples of terms of V (see
[AR] for details); this category T (UV) has finite products. We form the cate-
gory ModT (UV) of all models (i.e., functors into Set preserving finite products)
equipped with the forgetful functor

U : ModT (UV)→ SetS

U(M) = (Ms)s∈S .

Every algebra A ∈ V gives rise to a model M(A) with

M(A)(Ks1 × · · · ×Ksn) = As1 × · · · ×Asn = (Us1 × · · · × Usn)A,

and this defines a comparison functor M : V →ModT (UV) with U = U ·M . This
comparison functor is an equivalence of categories (and, conversely, when building
up a theory from a functor U : V → SetS if the comparison functor is an equivalence,
then V is concretely equivalent to an S-sorted variety of algebras).

Morphisms between S-sorted varieties considered as concrete categories are usu-
ally called algebraic functors. They can be defined as precisely those functors
F : V → W which are induced by a theory-morphism which is identity on objects.
That is, we are given a functor

H : T (UW)→ T (UV)

preserving finite products and satisfying H(M) = M for all objects, and F is
naturally isomorphic to the induced functor of composition with H :

− ·H : Mod (T (UV))→Mod (T (UW)).

It is easy to verify that a functor F : V → W is algebraic iff it is concrete, i.e.,
UW · F ∼= UV . These functors preserve and create limits, filtered colimits, and
regular epimorphisms (because the forgetful functors of varieties create all these).

2. Canonical algebraic theory

From now on, by a variety we will mean a variety of many-sorted, finitary alge-
bras. We have seen in Part 1 that each variety V has an algebraic theory T (UV)
given by all finitely generated V-free algebras (as a full subcategory of Vop). This is
not satisfactory if we want to consider V as an abstract category since the concept
of free algebra depends on the underlying functor from V to SetS . We obtain a
theory independent of an underlying set functor if we add also all retracts of V-free
algebras, i.e., take the Cauchy completion of T (UV).

Recall that an object A of a category A is called finitely presentable provided
that the hom-functor A(A,−) preserves filtered colimits. This is, for any variety V ,
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equivalent to the usual algebraic concept that there exist a way of presenting A by
finitely many generators and relations, see [AR]. Next, recall that an object A is
called a regular projective provided that the hom-functor A(A,−) preserves regular
epimorphisms.

Lemma 2.1. For an object V of a variety V the following conditions are equivalent:

(i) V is a finitely presentable regular projective;
(ii) V is a retract of a V-free algebra on finitely many generators;

Proof. (ii)→(i). This is trivial since finitely generated V-free algebras are obviously
both finitely presentable and regularly projective, and both of these properties
transfer to retracts.

(i)→(ii). Since V is finitely presentable, it is isomorphic to FV(X)/ ∼ where X

is a finite set of variables, FV(X) denotes a corresponding V-free algebra and ∼
is a finitely generated congruence on FV(X). Let e : FV (X) → V be the quotient
homomorphism. Then V(V,−) maps e to an epimorphism in Set, thus, for idV ∈
V(V, V ) there exists m ∈ V(V, FV(X)) with idV = em — consequently, V is a
retract of FV(X). �

Remark 2.2. Every category K has a Cauchy completion, i.e., a full embedding
E : K → K∗ into a Cauchy complete category K∗ such that for any functor F : K →
L into a Cauchy-complete category L there is a unique functor F ∗ : K → L with
F ∗ · E = F . See [B], Vol. 1., where K∗ is constructed as the closure of K under
retracts in SetK

op

.

Definition 2.3. By a canonical algebraic theory of a variety V we understand a
Cauchy-complete theory of V .

Corollary 2.4. For every variety V the category

Th(V)

dual to the full subcategory of V on all finitely presentable regular projectives is a
canonical algebraic theory of V.

Proof. Th(V) is a Cauchy complete algebraic theory. In fact the category Vop is
complete, and Th(V) is closed under finite products and retracts in Vop, and has
a small set of representatives with respect to isomorphism. Th(V) is a Cauchy
completion of the algebraic theory T (UV) as follows from the fact that the latter
is the full subcategory of Vop on finitely generated free algebras. Thus, by Lemma
2.1, every object of Th(V) is a retract of some object of T (UV). �

Examples 2.5. (i) The canonical algebraic theory for the trivial variety Set is the
category dual to Setfin, the category of finite sets and mappings.
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(ii) The canonical theory of Abelian groups is the dual of the category of all
groups Zn (n ∈ ω). In fact, every retract of Zn is isomorphic to some Zm. (Thus,
T (UAb) = Th(Ab).)

(iii) Let R be a commutative ring. Projective R-modules do not in general
coincide with free ones (e.g., for R = Z[

√
−5], see [La]). Hence the canonical

algebraic theory of the variety R-Mod of R-modules is generally larger than its
defining algebraic theory of powers of R.

Proposition 2.6. For every variety V, all algebraic theories of V have the same
Cauchy completion.

Proof. Let T be an algebraic theory of V . Since V ∼= ModT and Th(V) is a Cauchy
completion of T , we have

Mod (Th(V)) ∼= ModT ∼= V .

In fact, it is easy to check that, for every model M : T → Set, the extension
M∗ : Th(V) → Set to the Cauchy-completion preserves finite products. And the
passage M �→M∗ is an equivalence of ModT and Mod (Th(V)). �

Corollary 2.7. Every variety has a canonical algebraic theory, unique up to equiv-
alence.

Remark 2.8. There is a natural restriction of the above to one-sorted varieties:
the corresponding algebraic theories are precisely the singly generated algebraic
theories, i.e., categories T with finite products which have an object T such that
all objects of T are retracts of finite products of T .

Every one-sorted variety has a Cauchy complete, singly generated algebraic the-
ory, unique up to equivalence of categories. For example, the category T of finite
non-empty sets is the Cauchy-complete theory of the variety of Boolean algebras;
however, as generator T we could take 3 (or any fixed set bigger than 1, not neces-
sarily 2).

3. Algebraically exact functors

We have seen in Part 1 that every variety V is equivalent to the category ModT
of models of an algebraic theory T , i.e., a small category with finite products.
The converse is also true: for every algebraic theory T , the category ModT is
equivalent to a variety, see [AR]. In this paper by a theory morphism we mean
a functor H : T → T ′ between algebraic theories preserving finite products. It
induces a functor

H : ModT ′ →ModT
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of precomposition with H (i.e., H(M) = M ·H for models M of T ′). We call H

the functor induced by the theory morphism H . In general, by an algebraic functor
can be meant one which is induced (via a “semantics” functor like Mod ) by an
interpretation between theories. However, that takes on many different meanings,
because there are many different doctrines which specify: a domain category of
theories, a codomain 2-category; and a contravariant “Mod ” functor from the first
to the second. Actually, there are several such doctrines which would even merit
the adjective “algebraic”, so that we should more precisely speak of “D-algebraic”
functors, where D is a specified doctrine.

It is of course of interest to characterize these algebraic functors in terms of
the semantical codomain 2-category itself. In the case of algebraic theories with a
base K mentioned in Part 1, and correspondingly semantical categories equipped
with underlying-set functors, the characterizing result was simply that all concrete
functors (i.e., those commuting with the underlying-set functors) are induced by
interpretations of theories which commute with the basis. This illustrates clearly
that the very special algebraic functors do not include all those functors that could
be of interest in general algebra; no matter what the doctrine is, at least all mixed
composites of algebraic functors and functors which are left adjoint to algebraic
functors would be of such general interest.

Since in this paper our main doctrine does not involve bases in theories, nor
underlying set functors, there are many admissible interpretations between theories
and hence many “algebraic” functors. These do not necessarily commute with any
a priori underlying set notions, even for single-sorted theories. For example, if T is
the theory of commutative rings, and if h is a given monic polynomial with integer
coefficients, we can associate to each ring R the new ring obtained by adjoining to
R a generic root of h; this process is induced by a theory morphism, and raises each
set involved to the power d where d is the degree of h. This is in fact one of those
rare algebraic functors which is the left adjoint of another algebraic functor.

Our choice of morphisms has been influenced by the following theorem [Law3]:

Theorem 3.1. A functor between varieties is induced by a theory morphism iff it
preserves limits, filtered colimits and regular epimorphisms.

Remark. Explicitly, a functor G : V1 → V2 between varieties Vi
∼= ModTi is

induced by a theory morphism H : T2 → T1 if there are equivalence functors
E1 : V1 → ModT1 and E2 : ModT2 → V2 such that G is naturally isomorphic
to E2HE1 (Figure 1).

Proof. I. Sufficiency: Let G : V → W preserve limits and filtered colimits (therefore
be a right adjoint, see [AR, 1.66]) as well as regular epimorphisms. Let L : W → V
be a left adjoint of G. Since G preserves filtered colimits, L preserves the finitely
presentable objects. Since G preserves regular epimorphisms, L preserves regular
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V1
G ��

E1

��

V2

∼= ⇑

ModT1
H

�� ModT2

E2

��

Figure 1

projectives. Consequently, Lop(Th(W)) ⊆ Th(V), and we denote by

L0 : Th(W)→ Th(V)

the domain-codomain restriction of Lop. Then L0 is a morphism of algebraic theo-
ries (since L preserves finite coproducts, being a left adjoint), hence, we obtain the
induced functor

G0(−) = − · L0 : Mod (Th(V))→Mod (Th(W)) .

We will prove that G ∼= G0 by verifying that G0, like G, is a right adjoint of L.
More precisely, a right adjoint of the corresponding functor L′ : Mod (Th(W)) →
Mod (Th(V)) given by

L′ (W(−, X)
/
Th(W)

)
= V(−, LX)

/
Th(V),

(where a domain-restriction to a subcategory C is denoted by −
/
C). Thus, given

models X̂ = W(−, X)
/
Th(W) and Ŷ = V(−, Y )

/
Th(V) for algebras X ∈ W and

Y ∈ V , we want to establish a bijection

L′X̂−−−−→Ŷ

X̂−−−−→G0Ŷ

natural in X̂ and Ŷ .
If we restrict X to range through the finitely presentable regular projectives of

W , then this natural bijection is obvious:

L′X̂ = V(−, L0X)−−−−−−−−−−−−−−→Ŷ

Ŷ (L0X)

W (−, X) = X̂−−−−−−−→Ŷ · L0 = G0Ŷ

For general X we just use the fact that, due to Lemma 2.1, X is a canonical
colimit of finitely presentable regular projectives Xi with a canonical colimit cocone
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xi : Xi → X (i ∈ I) representing Th(W) ↓ X . It follows that X̂ is a canonical

colimit of X̂i (i ∈ I) and, since L′ is a left adjoint, (LX̂i
L′xi→ →LX)i∈I is a colimit

in Mod (Th(V)). Thus, to give a morphism f : L′X̂ → Y means to give a collection
fi : L′X̂i → Y (i ∈ I) of morphisms compatible in the sense that for any g : Xi → Xj

with xi = xjg we have fi = fj ·L′g. By the above established natural bijection this
is the same as giving a collection f∗

i : X̂i → G0Ŷ (i ∈ I) compatible in the sense
that xi = xjg implies f∗

i = f∗
j · g, and the latter is equivalent to giving a morphism

f∗ : X̂ → G0Ŷ . This proves that L′ 	 G0.

II. Necessity: Suppose that

G ∼= H

for some morphism H : W0 → V0 of algebraic theories withW = ModW0 and V =
ModV0. Observe that the functor (−) · H : SetW0 → SetV0 preserves limits and
colimits (since they are computed objectwise in presheaf categories). Consequently,
(−)·H preserves all limits and colimits under which the model categories are always
closed in the presheaf categories. These are all limits, all filtered colimits and all
regular epimorphisms; recall that models are precisely the presheaves preserving
finite products, and finite products commute with all three (in Set and thus) in all
presheaf categories. �

Definition 3.2. A functor between varieties is called algebraically exact provided
that it has the equivalent properties of Theorem 3.1.

Remark. Observe that algebraically exact functors are exact in the sense of Barr
[Ba], i.e., they preserve finite limits and regular epimorphisms.

Examples 3.3. (1) Every algebraic functor is, of course, algebraically exact.
(2) Let V be the variety of groups, considered as a concrete category over Set,

as usual, and let W = Set be the trivial variety with no operations (concrete via
IdSet). If Gn denotes a free group on n generators, then hom(Gn,−) : V → Set is
algebraically exact iff n is finite. And it is algebraic in the based sense iff n = 1.

(3) The constant functor C1 : V → W whose value is a terminal (one-element
per sort) algebra is algebraically exact but not algebraic in the based sense (if V is
non-trivial, i.e., contains algebras of more than one element in some sort).

Remark 3.4. The argument in Part II of the proof of 3.1 shows that every al-
gebraically exact functor preserves reflexive coequalizers (i.e., coequalizers of pairs
f1, f2 : A→ B for which d : B → A with f1d = id = f2d exists). This follows from
the easy observation that reflexive coequalizers commute with finite products in
Set.
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There is a more compact way of expressing preservation of filtered colimits and
reflexive coequalizers. Filtered colimits are known to be characterized by the prop-
erty that they commute with finite limits in Set. This has been generalized by
C. Lair, who introduced in [L] the following concept.

Definition 3.5. A small category D is called sifted provided that D-colimits com-
mute with finite products in Set. Colimits of diagrams whose schemes are sifted
are called sifted colimits.

Examples 3.6. (1) Every filtered category is sifted. For posets, the two concepts
coincide.

(2) Reflexive coequalizers are sifted. That is, the free category on the following
graph

x

f1

��

f2

�� y
d��

modulo f1d = f2d = id is sifted. This follows easily from the fact that given a
set-valued functor on the above category and forming a coequalizer c of Df1, Df2,
then for each pair (u, u′), (v, v′) in Dy ×Dy with c(u) = c(u′) and c(v) = c(v′) we
can find zig-zags of the same length connecting u, u′ and v, v′ (by using Dd).

(3) Every category with finite coproducts is sifted. This follows from

Proposition 3.7. A small category D is sifted iff it is non-empty and for every
pair d1, d2 of objects the category of all co-spans

d1
δ1 �� x d2

δ2��

is connected.

Remark 3.8. (1) By the category of all co-spans we mean the obvious one: a

morphism from d1
δ1→ −→x

δ2→ ←−d2 into d1
δ′
1→ −→x′ δ′

2→ ←−d2 is a morphism
h : x −→ x′ of D such that the diagram

x

h

��
d1

δ1
		������

δ′
1



������ d2

δ2
��������

δ′
2

��������

x′

commutes. Thus, sifted categories are characterized (among small non-empty cat-
egories) by the fact that for every pair d1, d2 of objects the category of all these
co-spans has just 1 connected component, i.e.,

(i) a co-span d1 −→ x←− d2 exists,
and
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(ii) any two of such co-spans are connected by a zig-zag (of co-spans).

(2) The sufficiency of the above condition for D to be sifted has been proved by
C. Lair [L] who used, instead of our “sifted”, the French version “tamisante”.

The necessity is trivial: if D is sifted, consider the diagram D(di,−) : D → Set.
It has colimit ∼= 1 in Set. Consequently, the diagram D = D(d1,−) × D(d2,−)
assigning to every x the set of all co-spans d1 −→ x ←− d2 has colimit ∼= 1. This
means precisely that (i) and (ii) above hold.

The following proposition improves Theorem 3.1 and Definition 3.2 by supplying
a more “algebraic” characterization of algebraically exact functors: Namely, they
are precisely those functors which are “homomorphisms” in a suitable 2-categorical
sense.

Proposition 3.9. Algebraically exact functors are precisely those functors between
varieties that preserve limits and sifted colimits.

Proof. Sufficiency follows from 3.6. (1), (2); necessity is proved as in 3.1. �
Remark 3.10. Algebraically exact functors are fully characterized as precisely
those exact right adjoints preserving sifted colimits. (The reader may recall here
that the category of locally finitely presentable categories, introduced in [GU], has
as morphisms right adjoints preserving filtered colimits.)

Observe that algebraically exact functors also preserve the passage from a re-
flexive coequalizer

R
f1 ��

f2

�� X
c �� Y

to the induced equivalence relation (kernel pair of c) because the latter is the colimit
of the chain of composites R0 = R◦R−1, Rn+1 = Rn ◦Rn. And algebraically exact
functors preserve relational calculus.

4. Duality of VAR and TH

Denote by VAR the 2-category of
(0) all varieties (as objects, or 0-cells)
(1) all algebraically exact functors (as morphisms, or 1-cells)

and

(2) all natural transformations (as 2-cells).

Observe that VAR fails badly to be locally small: there certainly exists a large
collection of functors G : Set → Set naturally isomorphic to IdSet (in fact, a col-
lection indexed by all subclasses of the class Ord of all ordinals — see [AP]). Each
such functor is a 1-cell in VAR.
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Denote further by TH the 2-category of

(0) all Cauchy complete algebraic theories (0-cells)
(1) all functors preserving finite products (1-cells)

and

(2) all natural transformations (2-cells).

We are going to prove that VAR is “essentially equivalent” to the dual of TH. These
categories are, of course, not equivalent on the nose because TH (whose objects are
small categories) is locally small. The precise statement to be proved is that the
following 2-functor

Mod : THop → VAR

defined on objects by T �→ModT , on morphisms by

(H : T → T ′) �−→
(
− ·H : ModT ′ →ModT

)

and on 2-cells by

(f : H → H ′) �−→
(
(Mf)M∈ModT ′ : − ·H → − ·H ′)

is a biequivalence. This concept, introduced by R. Street [S], means that (i) ev-
ery object of VAR is equivalent to one in the image of Mod and (ii) for ev-
ery pair T1, T2 of objects of THop the corresponding functor THop(T1, T2) →
VAR(ModT1,ModT2) is an equivalence of categories.

Thus, Mod is an “equivalence of categories up to natural isomorphisms”.

Theorem 4.1. The 2-category VAR is dually biequivalent to the 2-category TH.

Proof. We shall verify that the 2-functor Mod satisfies the above conditions (i)
and (ii) for biequivalences.

(i) Every variety V is equivalent to Mod (Th(V)); see Corollary 2.5.
(ii) For every pair T1, T2 of Cauchy complete algebraic theories the functor

Mod T1,T2 : TH(T1, T2)→ VAR(T2, T1)

given by

H : T1 → T2 �−→ − ·H : ModT2 →ModT1
is an equivalence of categories:

a. ModT1,T2 is full and faithful. This is a standard argument completely
analogous to that used in the Gabriel-Ulmer duality; see e.g. [AP] for
a careful exposition of the latter.

b. Every object of VAR(T2, T1) is (naturally) isomorphic to one in the
image of ModT1,T2 . This follows from the definition of an algebraically
exact functor.
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Remark. Since Mod is a biequivalence, it has a biadjoint biequivalence VAR →
THop; this is a bifunctor of the formation of canonical algebraic theories.

Remark 4.2. Returning to the above case of 1-sorted varieties and algebraic func-
tors, observe that this 2-category is obviously biequivalent to the full subcategory
of the comma-category

VAR ↓ Set

formed by all faithful functors. On the level of theories, denote by Setop
fin the dual

of the category of finite sets (a theory of the trivial variety Set). Then VAR ↓ Set
is, by our duality, dually biequivalent to the comma-category Setop

fin ↓ TH. And
the above 2-category of 1-sorted varieties is equivalent to the full subcategory of
Setop

fin ↓ TH formed by all functors which are identity maps on object sets.
Analogously for S-sorted varieties and Setop

fin ↓ SetS .
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(1968), 1–126.

[BL] G. Birkhoff and J. D. Lipson, Heterogeneous algebras, J. Comb. Theory 8 (1970),
115–133.

[B] F. Borceux, Handbook of categorical algebra, Cambridge University Press, Cambridge
1994.

[BV] F. Borceux and M. E. Vitale, On the notion of bimodel for functorial semantics, Appl.
Cat. Struct. 2 (1994), 283–295.

[D] J. Dukarm, Morita equivalence of algebraic theories, Coll. Math. 55 (1988), 1–11.
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