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Abstract

Using the setting of a topos equipped with a speci/ed in/nitesimal time-interval, we try in
part I to clarify the idea of lawful motions as morphisms in a category whose objects are laws
of motion on state spaces, and in part II to develop speci/c relations between states, bodies and
particles. A very general scheme to make mass distributions yield notions of inertia and hence
of force is discussed. Part III concerns a special notion of a body having just one point, yet
containing rich microstructure; such a body is placed in space and, in general, treated like any
other body. In part IV some detailed homogeneous and quadratic examples are de/ned.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Why should categorical algebra serve as an appropriate and useful guide to under-
standing and relating the vast variety of continuum models which arise in engineering
science? Very basically, it is because that variety is of two kinds: there are many mod-
els within a given category and there are also many related categories, and moreover,
the necessary motion of thought in those two dimensions requires careful algebraic
calculation, not mere speculation. Categorical algebra is most fundamentally the study
of 2-categories, which typically objectify situations like that just described, and which
provide the natural setting for that powerful tool of concept-formation known as ad-
jointness. For our purpose, we need to consider both categorical algebra in general and
also certain toposes conditioned by speci/c in/nitesimal adjoints.

∗ Fax: +1-716-645-5039.
E-mail address: wlawvere@acsu.bu@alo.edu (F.W. Lawvere).

0022-4049/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0022 -4049(02)00138 -X



268 F.W. Lawvere / Journal of Pure and Applied Algebra 175 (2002) 267–287

The two basic Steenrod division problem forms, lifting and extending, proliferate in a
general 2-category into many problem forms, especially if one assumes that some given
1-cells have adjoints, or that some previously stated problems have given solutions.
Geometric objecti/cation, that is, the careful introduction of “spaces” as objects to
represent the concepts involved, is used to bring this complex dialectic down to earth,
in a way explicit enough to be used as a guiding framework for formulating and
developing ideas by clarifying the contrasts—becoming vs. being—body vs. particle—
motion vs. law—solution vs. problem. In particular, by introducing spaces into the
algebra we can objectify the comparison of constant and variable (i.e. measurement).
Hence, in verifying the e@ectiveness of the guide, the needed propositions are about
the fundamental forms of functional analysis and di@erential equations, because notions
such as space of quantities, approximation, and internal cause, become de/nable.
I have proposed that any in/nitesimally generated topos of spaces is a useful frame-

work for algebraically interpreting Galileo’s Two New Sciences, in a way that includes
in/nite-dimensional systems such as elasticity and electromagnetism [6,7]. These two
new sciences are essentially the science of dynamics and the science of materials:
• In the science of dynamics, laws of becoming are deemed to act on states of be-
coming and not merely on con/gurations of being,

• in the science of materials, con/gurations are resolved into relations between body
and space and corresponding states can be de/ned; then laws of becoming for the
states are constitutively conditioned by those con/gurational relations.
In my talks at the 1993 Hamilton sesquicentennial meeting in Dublin and at La

Sapienza in Rome in 1995, I used the term “Algebra of Time” to refer to certain
consequences of the above dynamical principle, especially to the fact that the dynamical
time which parameterizes lawful motions is not one-dimensional. I will make precise
one of the ways in which that fact can be expressed; namely the usual functor, which
derives a /rst-order ODE on a state space from a higher-order ODE on a con/guration
space, has a left adjoint, which can be applied to a one-dimensional parameterizer in
the /rst-order category. The categories that are related by these functors are actually
toposes, as shown in my 1997 Montreal talk “Toposes of Laws of Motion” [6] and
again in another way by Kock and Reyes [9].
Most categories are not toposes, but the categories arising in geometry and dynamics

are often at least extensive and therefore have a useful full embedding into a cartesian
closed environment which has very good exactness properties. The general axiom of
extensivity merely requires that the category contain the possibility of non-cohesiveness;
surprisingly, this seems to provide the appropriate general environment for the study of
actual cohesiveness, and even for measuring it in terms of “higher connectivity”. Thus
that part of the accumulated knowledge of set-theoretical constructions, which remains
when one relaxes the Cantorian abstractness and restores some cohesion to the “sets”,
is always available.
In several crucial cases, for example microlinearity and FrPolicher duality, the category

of those spaces satisfying some strong condition of importance is actually a reQective
subcategory of a topos, with a reQector preserving /nite products. Those topos objects
that go beyond the special subcategories in principle serve to concentrate and objectify
i.e. represent concepts based already on the special spaces, and hence permit at least
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partially the study of those concepts as such by the methods appropriate to spaces.
Of course, it is crucial that the toposes can change into new toposes and back during
the course of an investigation. Occasionally, it is useful to assume further conditions
of completeness vs. smallness on the topos, for example, that the etale objects are
reQective or that the locally separable objects are coreQective. In general, it is plausible
to assume that some given functor has an adjoint if it does not appear to obstruct
the hypotheses of the adjoint functor theorem, but it seems better not to make such
assumptions in a wholesale manner since, for example, there is always the question of
whether special properties are preserved by constructions of a new topos from a given
one. As was worked out in the past century, many of the more “elementary” cases
of this objectivizing principle follow from the existence of free monoids, i.e. from the
existence of a natural numbers object. We use below a form of countable iteration a bit
more general than free monoids, namely free monads generated by certain generalized
objects. Note that a seemingly di@erent form of countable iteration is involved in
forming pullbacks of toposes bounded over a given base.

I

The basic setting is a topos E equipped with a speci/ed pointed object T , an “amaz-
ingly tiny object” (ATO) in the sense that ()T has a right adjoint ()1=T . 1

T usually satis/es some very strong further properties. For example, the point 1 0→T
is unique. The submonoid R ⊂ TT , of those (parameterized) endomaps that /x the
point, is commutative. In fact R usually has a well-determined addition as well and
serves as a codomain for variable intensive quantities on arbitrary spaces. Actions of
powers of the commutative monoid R are at the base of Birkho@’s theory of dimen-
sional analysis. The object T is Dedekind-/nite in the sense that the endomorphism
monoid TT , although not commutative, satis/es “xy invertible i@ x invertible and y
invertible”. A property which is perhaps more directly suggestive of “tinyness” is that
any monoid generated by the pointed object T is commutative; this property is directly
related to the central example of second-order ODEs as reviewed below. An eScient

1 Re: Terminology: In my 1980 Amiens lecture [Cahiers de Top. et GTeom. Di@., XXI, 337–392], where
I introduced these special objects into geometry, I expressed Grothendieck’s exclamation point notation (for
the unexpected right adjoint a geometric morphism E′ → E may sometimes have) by the word “amazing”;
it is especially surprising when the morphism is of the form E=T → E. The same objects were called “tiny”
by Freyd and Yetter [13] who proved some of their basic properties. In a presheaf topos the ATOs are the
quarrable representable objects, surely small compared with the general presheaf, but there typically these
representables are spaces like /nite-dimensional Euclidean spaces. However, when we pass to a subtopos
E, the condition that ()1=T take sheaves to sheaves may be a drastic restriction on a representable T ,
requiring indeed that T be qualitatively tinier. For example, the function space (TT )X on X = T is often
/nite-dimensional (but see [4]), whereas on other representables, such as X = TT , the function space is
typically in/nite-dimensional. It is indeed only at the latter level that the examples of real algebraic, real
analytic, C∞ toposes begin to di@er, since the maps between the ATOs Tn themselves are the same algebraic
ones in all such examples. The term “atom” was used by Bunge for a related notion and later by Kock
in his book [8], although it clashes with the use of that term by Barr which applies mainly in a Boolean
context. The resulting acronym ATO will be completed below by attributing a physical context, matter and
motion, to the M .
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axiomatic presentation of these many additional strong properties of T still needs to
be worked out; these additional properties are only occasionally needed in this paper.
In the basic setting a great number of important concepts can be de/ned, such as

open and closed inclusion, etale map, micro linear object, manifolds, formal function,
strong Nullstellensatz, etc., and especially the foundationally important category S of
T -discrete objects that permits analyzing and constructing general spaces (“Mengen”)
in terms of natural “structure” arising on discrete objects (“Kardinalzahlen”), as in the
Dedekind–Cantor–Hausdor@ tradition. Here the natural de/nition of “discreteness” is
S ∈S i@ S = ST canonically; this means that S does not have enough cohesion to
permit any non-constant paths, even in/nitesimal paths. One partial expression of the
idea that T “in/nitesimally generates” E would be the condition that the identity is
the only Grothendieck modal operator j on the truth-value space � such that T is a
j-sheaf.
There are many examples of such settings, for example those provided by C∞ spaces,

real analytic spaces, algebraic spaces, and as yet unexplored possibilities such as an
“algebraic” approximation to C∞ behavior which would be based on adjoining standard
“bump functions” like exp(−1= ) to the usual algebraic theory of real polynomials.
Properties that distinguish these examples can be expressed in the language of the
setting E, T but our general considerations here will not depend on these properties.
In all those examples, T has been de/ned to be a speci/ed part of a rig R deemed to
parameterize a smooth line; conversely, in our general setting we can de/ne

Dn(T ) = {h|hn+1 = 0} ⊆ TT

as parts of the canonical bipointed monoid and consider that a unit of time is any given
isomorphism T ∼→ D1(T ). Note in particular that in some well-adapted examples TT

may contain objects which are much larger than these Dn, yet still ATOs, for example
the germ representor [1].
The fractional exponents may be considered as left actions by “distributional objects”

where by the latter we mean any left S-adjoint endofunctor E → E. Such may be
considered as “random endomorphisms” of E in the sense that they assign to every
point of E a distribution on E. Ordinary objects A covariantly determine distributional
objects via

AX = A× X

but any ATO T also contravariantly determines a distributional object 1=T :

(1=T )X = X T :

Composition of objects AB is commutative, since it is given by cartesian product, but
composition of general distributional objects is not commutative. For example, if we
de/ne

(A=T )X = A(1=T )X = A× X T

then (1=T )A= AT =T .
For any ATO T , 1=T is a special distributional object, indeed the inverse image of

an (essential) geometric endomorphism of the topos E.
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The distributional objects generalize both endomorphisms of E and sheaves (“S-
valued functions”) A on E just as linear operators on a function space generalize both
endomorphisms of and functions on the domain space. The category of distributional
objects has pushouts, extending the pushouts of actual objects, since the pullback of
the corresponding right adjoints serves as right adjoint. A distributional object is called
“pointed” if it is equipped with an S-natural transformation from the identity; again,
this extends the notion of pointed object. For example, 1=T is pointed for any ATO T
whether T itself is pointed or not.
In general, a retraction EB → E for the diagonal may be called an “averaging process

over B”, so that for an ATO B, a process of averaging over B is the same as an action
by the pointed distributional object 1=B.
Countable coproducts of distributional objects should exist too, hence also free ac-

tions extending the notion of free monoid as the countable coproduct of iterates;
however, we will only need to assume this for some very special cases involving
distributional objects G obtained by “collapsing to a point” a copointed part P of a
fractional object F = A=T

P −−−−−→ F





�






�

1E −−−−−→ G

i.e. for every X
PX −−−−−→ A× X T






�






�

X −−−−−→ GX

is a pushout in E. For a pointed distributional object G, a further colimit yields the
distributional monoid whose actions are those of G respecting the pointing. In fact, a
basic example of a co-pointed distributional object is P=T=T with the evaluation map
T×X T → X as the co-pointing. To make this P a “part” of F we use the additional data
of a map T �→ A, for then there is the induced (T=T )X =T ×X T → A×X T =(A=T )X
given by �× 1. The pushout G� in this case represents an important notion:

Proposition 1. For any map Ao
�→ A; by an �-prolongation operator or �-law on X

is meant any section X Ao �→ X A for �∗. If Ao is an ATO and M� is the distributional
monoid generated by the pointed distributional object G� constructed as above; then
M� actions are the same as �-laws and the category of all these is a topos E� with
a “surjective” morphism

E → E�

which is S-essential.
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Proof. By the Eilenberg–Moore proposition; E� is also the category of co-actions of
the comonad (involving fractions as exponents) right adjoint to M�; so in particular
E� is lex comonadic over E (with the inverse image functor being the one neglecting
the prolongation operator that each object of E� has). (An alternate proof and several
interesting further developments are given in the article [9] by Kock and Reyes.)

Note that the above proposition holds for any Ao
�→ A where Ao is any ATO (Ao

is not necessarily the basic ATO T of our setting). It also holds for any object A,
for example A= 1; in that case the category E� =S and the extra left-adjoint in the
essential surjection is a “connected components” functor which actually preserves /nite
products. (Note that SX is T -discrete for any T -discrete S and for any X .)
Since the product of two ATOs is an ATO, it follows that for any ATO I the product

�× I is also a datum such that the prolongation operators along it form a topos.

Proposition 2. There is a functor E�×I → E� assigning; to any (�× I)-law on X ; an
�-law on X I . The natural structure of the composite functor E�×I → E� → E includes
action by the monoid I I .

In case we have two data B0
�→ B and C0

�→ C we can inquire about functors
E� → E� that preserve the underlying space. Such are induced by morphisms of
distributional monoids M� → M�, that might in particular be presentable by morphisms
G� → G� of pointed “objects”; how can morphisms of pointed objects of that special
kind be induced? A morphism � :� → � of morphisms is not suScient, because of the
mixed variance, nor could a “twisted” morphism alone be guaranteed to preserve the
fundamental prolongation identity. SuScient will be the following.
Data. Consider a triple of maps �0, �1, and �−1 such that �0 and �1 determine a

morphism from � to �

i:e: �1� = ��0

B0
�−−−−−→ B






�

�0






�

�1

C0
�−−−−−→ C

and such that �−1 is a retraction for �0: i.e. �−1�0 = 1B0 .

Proposition 3. These data induce a con<guration-space-preserving functor E� → E�

between the categories of prolongation operators. This is merely a remark about the
algebra of categories and does not depend on B0; C0 being ATOs. In case B0; C0 are
ATOs; then � induces a map of presentations

B=B0 −−−−−→ G� −−−−−→ M�





�






�






�

C=C0 −−−−−→ G� −−−−−→ M�
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Proof. Actually X ( ) could be any contravariant functor; denoted ∗. We must show that
if � is any section for �∗; �∗�= 1; then

�# =def �∗
1��−1∗

is a section for �∗. But

�∗�# = �∗�∗
1��−1∗ = �∗

0�
∗��−1∗

= �∗
0�−1∗ = (�−1�0)∗:

The map of presentations is

B× X B0






�

�1×�−1∗

C × XC0

compatible with � and � because of the role of �0. We will show in the theorem below
that any such induced functor has a left adjoint.

A special case of the above has B0 = C0 and �−1 = 1 = �0; the only condition is
�=��. Still more special is that where B0 =A0× I , B=A× I , �=�× I and A× I �→ C
is such that � = �(� × I). Then the category of �-laws maps into the category of
�-laws, changing any underlying space X of “con/gurations” into the special space
X I of “states”. The contrast between these two terms arises because of this change of
categories. For example, in such a context A0 × I → A× I �→ C often arises when �
is addition of nilpotents as in Examples 3, 4, and 6 below.

De�nition. Suppose A1
�→ A2 is a given map in E. An operator X A1 �→ X A2 is a

prolongation law of order � on the con<guration space X i@ �∗� = 1; the identity
on X A1 . A lawful motion is a morphism in the category E� of �-laws; that is a map

X
f→ Y between con/guration spaces with f�X = �Yf. If L is a monoid acting on

both A1 and A2 and commuting with �; then a law � is an L-connection i@  2�= � 1
for all  in L; where  k denotes the action of  on X Ak .

Example 1. If A1=1; A2=T ; and the unique � 1 o→ T is the basic point-contradiction;
then a prolongation law of that order is a /rst-order ODE; that is just any action
T ×X → X of the pointed object; also known as a vector /eld on X . Since E has free
monoid objects generated by pointed objects; and hence free and cofree actions; these
laws and lawful motions form a topos ET with an E-essential geometric morphism E →
ET whose inverse image is the functor that forgets the prolongation law (or vector /eld)
and remembers the underlying con/guration space. In this example con/guration space
and “state space” will mean the same thing. The monoid T∞ generated by the pointed
object T naturally has an action of the multiplicative monoid R of point-preserving
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endomorphisms of T . Hence there is a semidirect product (/bered category) monoid

T∞ ,→ R T∞ → R

whose actions may be of interest.

Example 2. All of Example 1; except for the terminology; applies to any pointed
object; in particular; EV is an E-topos and E → EV is E-essential without any condition
on the pointed object V . This contrasts with the more general examples below; which
typically involve only S-toposes and S-essentiality.

Example 3. If Dk is a space of kth order nilpotent in/nitesimals; and if � is the
inclusion Dn−1 ,→ Dn; then a prolongation law of order � is what is usually called an
nth order ODE.

Example 4. If A1=T and if A2 is in some sense second-order; with � an inclusion; then
an �-prolongation law may be called a second-order ODE. There are several precise
choices for A2:
• the symmetric power T 2=2! with order � = the quotient map preceded by either
coordinate axis;

• the coequalizer of the coordinate axes 0× T and T × 0 (this has only one meaning
because T has only one point)

T −−−−−→−−−−−→T × T−−−−−→ C

with order �= the common composite,
• a generic quantity h with h3 = 0, i.e. the object D2 ⊂ TT ; here the speci/cation of
order requires a unit of time and addition in R.

There is clearly a natural map C → T 2=2! taking � to � because the group 2! inter-
changes the two coordinate axes; in most examples this map can be assumed invertible,
since it is stable under base change, intuitively a further aspect of the “amazing tiny-
ness” of T . When the pointed monoid R ⊂ TT happens to have a uniquely determined
homogeneous addition, a choice of unit of time induces a map T 2=2! s→ D2, so that
second-order ODEs of order s� give rise to ODEs of order �, in other words, in
that case second-order is interpretable as iterated /rst-order. Note that “order” is here
more precise than a mere natural number. Caution: the proper interpretation of the
homogeneous map s requires that the element 2∈TT be invertible. In many exam-
ples s is also an isomorphism. Note that the monoid L= R naturally acts on all three
C → T 2=2! → D2, so that in any one of the three toposes there is a subcategory of
L-connections, usually known as a>ne connections. This subcategory is monadic by a
quotient monad.

Remark. If we use explicitly the assumption that T has the property that its tangent
vectors can be added; then comparisons

Tn=n!→ TT

mapping into Dn(T ) can be de/ned. But conversely; much of the small role addition
plays in our considerations here can be played by the maps into the symmetric powers
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themselves. In other words; without assuming any addition in the tangent /ber R of T ;
we can instead interpret iteration of in/nitesimal time translations as formal addition
in the commutative monoid freely generated by the pointed object T ; which strikingly
is the same as the “non-commutative” monoid generated by the same data.

Example 5. Prolongation laws are not the same as “force laws”; in typical examples;
laws form merely an aSne space whereas force laws form a vector space; indeed the
vector space of translations of that aSne space. Forces are a measure of the contrast
between the actual law and a second auxiliary law often considered to express inertia.
For ways of constructing a possible auxiliary law from the actual law with help of a
mass distribution see part II. This leads to a very important further interpretation % of
the idea of “second-order”; namely the pushout

↗ T ′
↘

T %−−−−−→T ′′

↘
T ′ ↗

of two copies of a given notion of second order (the resulting T ′′ actually contains
some third order nilpotents in the standard example). Clearly; an object in the category
E% of prolongation laws of order % is a single con/guration space X equipped with
two laws of order T → T ′. Such we may reasonably call a Galileo–Newton dynamical
law; a name justi/ed with respect to the aspect of pure dynamics; for the material
aspect see part II. Often one requires that the auxiliary law be an aSne connection;
i.e. R-homogeneous; thus distinguishing it from the main law.

Remark. For any Galileo–Newton dynamical law; force can be de/ned as any mea-
surement of the di@erence between its two component laws. In the frequent case
where all the possible laws form an aSne space; there is a natural largest ideal force
measurement; namely subtraction going into the corresponding vector space of transla-
tions. In general; a force measurement is only partial given by an apparatus consisting
of a map over X ; X T2 &−−→ F; considered as a force component; then &� is the force
in direction & that accompanies the Galileo–Newton dynamical law �. If F has addi-
tion and subtraction even though X T does not and if & vanishes where the two laws
agree; then this would permit the discussion of approximating laws by (virtual) aSne
combinations of simpler laws; as is fundamental for engineering [6].
While it is reasonable to speak of arbitrary morphisms in a category E� as lawful

“motions”, it is customary to reserve that term for morphisms whose domain is a
special object considered as an interval of time U structured itself with its Qow, a
given �-law A×UA0 → U . For example, if A0 = 1, A= T , we might take U to be an
open one-dimensional interval of time, or the still smaller D∞ that represents “formal”
solutions and is closed, like U , with respect to in/nitesimal translation T×D∞

+→ D∞.
We are interested, however, not only in general vector /elds, but also in the more highly
structured ODE’s, especially in the crucial case of second-order laws.
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Theorem (The algebra of time).
Suppose �−1, �0, �1 are data that present a homomorphism M� → M� of general-

ized monoids, where A0
�→ A and C0

�→ C with A0, C0 ATOs, and I any ATO, and
where � = �× I . Then the composite functor

�* (  )I

E� E�

E�

has a left adjoint. Hence, given an object U in E� whose underlying space is deemed
to represent a notion of path or process, one obtains, by applying the left adjoint,
a space �!(I · U ) with a �-law representing the functor “space of solution curves for
�-dynamical systems”

E� −→ E�(U;−)−→E:

Note that a category E� of prolongation laws is enriched in E, not only in S, since
it is an equational class of algebras each involving an A-tuple of A0-ary operations;
this is true for any A0, not necessarily an ATO, even if E� is not a topos.

Proof. As the notation suggests; we can construct the adjoint as a composite of two
adjoints �! and I · for �∗ and ()I ; respectively.

An important example of the above constructions involves just a given map.

De�nition. Given Co
�→ C; let T (�) be CCo considered as a pointed object pointed by

[�]. If Co = 1; then T (�) remains �; for example if C = T ; the basic ATO. Call this
pointed space T (�) the microtime.

Corollary. Given any �-law � on a con<guration space X ; there is an associated
action by the micro time T (�) on the space XCo . This action

�%[x](h) = �[x](%(h))

is special in that it satis<es the equations

%1(h1) = %2(h2)⇒ �%1(x)(h1) = �%2(x)(h2)

for micro times % and for h in C0.

Example 6. In case Co =Dn−1; C=Dn; �= the inclusion; and hi)Di where i1 + i26 n;
then we can take for example %1 to be translation by h2 and %2 to be translation
by h1 to recover the well-known equation which characterizes higher-order laws as
special /rst-order laws on a state space like XCo . However; there is more structure in
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micro time beyond this possibility of acting by translation: Via the given map �; the
monoid CCo

0 is included into the pointed space T (�); so that the T (�)-action induces
a CCo

0 -action. Those actions arising from �-laws thus actually permit recovery of the
con/guration space from the state space. Our central example has Co = T and C = T ′;
second order; so that T (�) is no longer in/nitesimal; but rather we have

T × R ⊂ T (�) ⊂ T ′ × R:

Nonetheless; the T (�)-actions (with suitable relations—see Proposition 6) will form
even an E-topos.

Proposition 4. The <xed-point space of the codiscrete action of a monoid on a space
XCo ; where Co is the nonempty space of constants of the monoid; is X itself. For
example; for the full endomorphism monoid of any given space Co; the constants are
just Co.

For a given law one often seeks solutions to the initial and boundary value problems
it poses. These solutions are again prolongation operators of a di@erent sort conditioned
by the law. If U; X are objects in E� (i.e. con/guration spaces equipped with �-laws),
and if B in E is a subspace of the underlying space of U , there is the restriction map

E�(U; X )→ E(B; X ) = X B

and a solution to the B-problem is just a section for that restriction map. Obviously,
if B1 and B2 are such that there is a �-connection, that is, an isomorphism

E(B1; X )
∼→ E(B2; X )

induced by a solution to the B1-problem, a solution to the B2 problem results. The
process of applying a B1 solution via a connection in order to solve the B2 problem
is called shooting in the special case where B1 is an ATO but B2 is discrete. If the
con/guration space X is aSne and has a connection as given by the Kock–Lawvere
axiom, then the shooting is straight. The term “shooting” apparently has the following
origin: In order to be free to shoot an arrow from any given place with assurance of
hitting any given target (these two conditions being given by a map B2 → X ), I must
recognize the physical necessity expressed by the speci/c �-law that applies and on
that basis choose the appropriate initial condition (e.g. velocity vector) B1 → X .
For any topos such as E� and object Y in it, the “slice” topos E�=Y is again a topos.

For example, non-autonomous systems over a time interval U can be described this
way by taking Y = F�(U ), the relatively free �-dynamics generated by U . The latter
is merely equipped with the translation vector /eld T ×U → U . Here we assume that
� is equipped with a morphism from the /rst order 1 → T . Essentially we model the
con/guration space E to include a clock, and the equivariant structure morphism E → Y
reads the clock. Bigger parameter spaces Y arise when the system to be described
involves the inQuence of an environment such as body forces, radiation, forcing terms,
frequency parameters etc. “anything you want”, as Lang wrote about slice categories
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in his 1960 review of Grothendieck’s EGA project, provided that these are also subject
to speci/ed laws. 2

Models for things moving under the inQuence of such an environment Y constitute
E�=Y . For example, locally the con/guration space may split as a product E = X × Y
where X T is the space of internal states; relative to some aSne inertia law, the force–
density law corresponding to a �-prolongation law can then be written in the traditional
way

Px = f(x; ẋ; y; ẏ)

Py = g(y; ẏ):

The crucial condition for the projection X × Y → Y to be �-lawful is that g does
not depend on X T . For example, if y is mere one-dimensional time, it would be
reasonable to take g ≡ 0. But if y is the altitude of some falling device whose internal
motions may be e@ected by y, even though y does not vary too much, we might take
g = const, etc. Although such an asymmetric model of the relation between a thing
and its environment is an appropriate approximation in many circumstances, it cannot
be of the canonical Hamiltonian form, as the following shows:

Proposition 5. If a product space X × Y carries a dynamical law given by a Hamil-
tonian function H; then if one of the projections X × Y → Y is equivariant; so is the
other X × Y → X . “No reaction implies no action”.

Proof. We are supposing that locally X T and Y T trivialize as X × V and Y × W;
respectively. Then

ẋ = @vH; ẏ = @wH;

v̇=−@xH; ẇ =−@yH

and the assumption requires that @wH and @yH be independent of x; v; so that

@x@wH = 0; @x@yH = 0;

@v@wH = 0; @v@yH = 0:

Since partial derivatives commute; these equations imply also that @vH and @xH are
independent of y; w; so that X × Y → X is also equivariant.

2 In this connection, note that in Indo-European languages “time” is not typically just an abstract
one-dimensional continuum; the abstract time is a dialectical negation of the idea of time as the rich envi-
ronment of external conditions that may inQuence our system, but which we can inQuence only negligibly:
In Italian tempo (time) also means weather, in Danish the word for time is tid, which is old English for
tide. In a Zeit-ung like the Times the tidings describe the whole tempestuous march of events over which
the reader has little control. In English we have “the worst of times” and “the best of times”, and “the times
are a-changing”, something a mere smooth line cannot be or do.
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It follows that the energy is a sum function H =HX +HY , describing the product of
two Hamiltonian systems in the category E� of all second order systems, Hamiltonian
or not.

II

The notion of averaging is dual to that of prolongation in the sense of the following.

De�nition. Given a map B �→ A; an �-averaging functional on E is a map

EB m→ EA

for which m�∗=identity; i.e. a retraction onto EA for the inclusion �∗. Of course there
will not exist any averaging functionals if �∗ is not an inclusion.

Remark. An example involves the space E0 in which the solar system moves; with
B the sum of the main extended bodies (sun; planets; and signi/cant moons) and �
the partitioning of B into a /nite discrete set A of point-idealizations. The barycentric
calculus was developed by an astronomer (1827). It has become traditional to con-
sider averaging functionals m that commute with another given averaging process ‘ on
another “body” like 2 or 3; such averaging processes m are called ‘-linear.

Proposition 6. An averaging functional on X is equivalent to an action on Y =X B of
the monoid presented by

(BB ∗ {1; e})=e e =  e for  any endomorphism of �:

The dual notion to “L-a>ne connection” is that of an averaging functional satisfying
also e e = e for  in L. Dually; for C0

�→ C; a �-prolongation on X is equivalent
to an action on XC of a monoid CC{e}; where the adjoined idempotent is subjected
to opposite de<ning equations; so that in particular

(e )(e3) = e( 3):

The distribution of the mass of a body B induces an averaging operation along
B → 1 on a space E where B is moving

EB m→ E:

Thus we are led to consider con/guration spaces X (like EB) that have an idempotent
operator embodying such a center-of-mass averaging. Given a �-dynamics on X , we
deduce a �-dynamics �o on the /xed space E of that action by (roughly) �o = m�i,
where mi=1 is the splitting of the idempotent. Then there is an induced dynamics �oB
on any power EB. A possible axiom on the relation of � and m is that the dynamics
�o on E (and hence �B

o ) is actually L-homogeneous; this may have been what Hertz
intended.
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Proposition 7. Given a �-prolongation law X T �→ X T ′
and a retraction X m→ E of

the con<guration space onto the subspace E i→ X ; the map ET �0→ ET ′
de<ned by

�0 = mT ′
�iT

is a section for �∗ on E; i.e. a �-prolongation law on E. However; neither m nor
i is an equivariant map (lawful motion) between � and �0. In case X = EB with
i the diagonal; m and � induce �B

0 ; a second structure on EB so that together �
and �B

0 determine a �-prolongation law relative to the self-pushout of T
�→ T ′ as in

Example 5.

Remark. For a Galileo–Newton system that arises from a mass distribution this way;
the auxiliary law deserves to be called inertial; so that force; mass; and acceleration
have their traditional sort of relationship.

Remark. Since prolongation laws and averaging functionals both involve splitting (in
opposite senses) of natural maps; yet themselves are usually not natural; the idempo-
tents they give rise to are in a sense half-natural. That can be expressed algebraically
in terms of semi-commutation rules. For example; suppose we are given both a mass
distribution and a law of motion in the following relation:

Example 7. Suppose X is the con/guration space for a C0
�→ C prolongation law �;

but that X
m
�
i

E is a retraction. Then XC (the space of slightly longer paths) carries

a left action by the six-element monoid generated by two idempotents a = ��∗ and
3 = i∗m∗ satisfying the relation

a3a= a3:

Thus 5 = a3 is again idempotent; but  = 3a satis/es only  3 =  2 in general. It is
reasonable to consider the other m∗

XC0 → EC0

as the passage from /ne states to coarse states (or micro states to macro states);
keeping in mind that m∗ is not an equivariant (lawful) map from � to �0. It may be
possible to choose (following Muncaster [10]) a section i (possibly not “diagonal”)
that is equivariant. That condition is equivalent to the further relation

3�30 = �30;

where 30 is the obvious idempotent on the space of /ne states. Just as the action of
T (�) is a signi/cant portion of the algebraic structure of the state space functor; so
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the action of this monoid is part of the natural algebraic structure of the micro-path
functor ()C . 3

In order to begin to illustrate how the categorical algebra discussed in this paper
can help to provide a smooth objective background for dealing with particular kinds of
constitutive relation for materials, consider the general idea that an ATOM is an ATO
moving, i.e. a body with a mass distribution and a dynamics as above, where the body
is itself an ATO. One possible model making this idea precise is the following

De�nition. Let A be an amazingly tiny object and let T %→ T ′′ be a given “order”
with T amazingly tiny. Then a generalized A-monatomic system is a space E equipped
with an averaging process EA m→ E and a %-prolongation law � on EA as con/guration
space.

Example 8. If we have a family S of identical atoms A and if E0 is “ordinary space”;
then a natural con/guration space for the body S × A is

X = ES×A
0 = EA;

where E=ES
0 . If an isolated single atom has mass distribution EA

0
m0−−→E0 for its place-

ments in ordinary space; then a suitable averaging process along the projection S×A →
S is induced by ()S as

EA = ES×A
0

∼= (EA
0 )

S mS
0−−→ES

0 = E:

Of course; if we also had a distribution on S; leading to another averaging E →
E0; we could de/ne a center-of-mass notion for the whole body B = S × A and its
placements in ordinary space; but that coarser; kinetic theory sort of functional is not
needed for our construction here. Rather; the much more re/ned m ∼= mS

0 essentially
just averages over the internal con/gurations of each atom; but remembers the precise
mutual con/guration of the resulting virtual point-particles. The “generalization” in the
above de/nition means that we do not assume that m arises from some single smaller
m0 in this way; nor even that E is a function space ES

0 . The state space for a general

3 In general, one might say that an important purpose of categorical algebra is to express everything
possible in terms of adjointness, naturality (homomorphicity) etc., in order to provide a smooth context for
studying more serious contradictions; then cohomology measures the extent to which topos morphisms are
not local, essentiality measures the extent to which spaces are not connected, and adjoints between E-enriched
categories may be merely S-enriched; there is much information in those gaps. An example of the importance
of such non-naturality is well-known in statistics and mechanics under the name of “moments”. Namely,

suppose ES m→E is a retraction for the diagonal. If En 7→E is any map, one can ask whether 7 commutes
with m. In case 7 is also a retraction for the diagonal into En, one could then say that m is 7-linear; often
m is 7-linear for a reasonable set of averaging processes 7 which are linear among themselves. But if n=1
and 7 is “quadratic”, then m commutes with 7 only if all possible data has m-variance = 0; that tends to
imply that m is concentrated to evaluation at a point of S, but then (by naturality) m will commute with all
operations 7. However, more typically, (as an instance of semi-homomorphicity) some particular data in ES

may have zero variance although most do not. Similarly, for n = 2 and for 7 a “multiplication” on E, the
equation m7S = 7(m × m) usually does not hold, but the two sides may give equal values on some special
“7-uncorrelated” pair 〈x; y〉 in ES × ES . Thus a statistic E × E

’→V vanishing on the diagonal, etc. (as in
the concept of force component) yields a measurement ’〈m7S ; 7(m × m)〉 of 7-correlation.
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A-monatomic system is of the form X T = (EA)T = (ET )A; where ET is the tangent
bundle of E.

Theorem. The A-monatomic systems of order % in a base topos E form themselves
a topos; de<ned over the base topos S of spaces which are both T -discrete and
A-discrete; and receiving a “surjective” S-essential geometric morphism from E.

Proof. As already remarked; an internal mass distribution of the A amounts to an
action of the pointed distributional object 1=A. Since both T and A are ATOs; T × A
is as well; so that prolongation laws of order

T × A %×1A−−→ T ′′ × A

are an example of the kind already treated in part I; but since such prolongation laws
on E are exactly the same as %-laws on EA; we can form the pushout of orders; of
pointed distributional objects; and of monads; etc.; to /nd the adjoint monad whose
algebras form the topos required.

III

Freyd proved that for any ATO D in a topos E, the object D×B is an ATO in the
topos E=B, though usually not an ATO in the sense of E itself. Nonetheless, the object
D × B is important in E. For example, if S is two-dimensional, then S ′ = T × S has
three-dimensional tangent space; if we consider S ′ as a body that can be con/gured
via placements in three-dimensional space E0, we may try to /nd laws � of motion
on X =ES′

0 appropriate to the sort of body known as a classical Cosserat continuum:
a body so extremely thin that it responds always as a Qexible sheet; it can experi-
ence stresses and strains in all directions like any three-dimensional body. Similarly,
a Qexible cord may be modeled as U ′ = D × U where U is a one-dimensional inter-
val and D is a “two-dimensional in/nitesimal disk”, an ATO which will serve as the
cross-section of U ′; the mechanics of such a Qexible cord were already studied by Eu-
ler. The extreme case where an ATO itself is the underlying space of an in/nitesimally
three-dimensional “point” was studied by Cohen and Muncaster [3]; some examples
are given below. In my opinion attributing “dimension 0” to a discrete sum

∑
Ai of

ATOs, as is sometimes done in algebraic geometry, is too crude, since more than just
the underlying topological space is relevant. The system of dimensions is a more subtle
structure than the mere natural numbers and we can attribute a special dimension ()?)
to such sums, unless all the Ai are themselves nearly punctual. That would be a theo-
rem, not just an imposed de/nition, if the system of dimensions for E were construed
as a universal monoidal poset or universal 2-rig in the spirit of Schanuel [12].
In the theory and practice of the modern science of sophisticated materials, much

more general “microstructure” of the Cosserat sort must be considered, perhaps even
requiring more additional directors so that the total tangent dimension is greater than
three. Capriz in his book [2] lays down on page 10 a general de/nition of a continuum
with microstructure as a body B0, together with another space M which is equipped
with an action by the group G of rigid motions of E0, but an action which depends only
on the rotational part of a motion, and with a special class C of admissible placements
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of B0 into E0 ×M. Apart from smoothness, it is assumed that C is closed under the
diagonal action of G on E0 ×M.
While speci/c constitutive relations, forces, motions, etc. in continuum thermome-

chanics are mostly expressed in terms of variable extensive and intensive quantities,
the character of the underlying domain spaces where those quantities vary is also im-
portant. Those spaces have dimension and homotopy type, and their in/nitesimal and
smooth structure needs to be considered as well. However, all four of those qualities
are reduced to nothing if one considers that underlying spaces are merely abstract sets
equipped with sigma-algebras. We need to understand when microstructures M;C of
the sort described by Capriz and by many others can be extracted from a mere object B
(whose underlying measurable space may be the same as that of the B0) in somewhat
the same way as in my above account of the Cosserat surface.

Construction. Let B be any object in E; whose tangent bundle is trivialized by BT ∼=
B×W and likewise E0 with ET

0
∼= E0 × V . Here W and V are equipped with pointed

R-homogeneities to agree with those naturally on the /bers; but they need not have
any internal additive structure; however; the inverse trivialization B × W → BT can
be denoted by +. An endomap � is a translation relative to such a trivialization if
�T = 〈�; 1〉.

De�nition. M = HomR(W;V ) the homogeneous maps. For any “placement” B x→ E0
we can take its derivative x′ = 9xT :

W × B xT−−−−−→ V × E0
9−−−−−→V






�






�

B x−−−−−→ E0

and then the exponential transpose grad(x) = [x′]:

B −→ HomR(W;V ) =M:

Then de/ne C = {〈x; grad(x)〉 | x)C0} where C0 is a speci/ed space of placements of
B itself into E0 itself; closed under G. Since B is richer than a traditional manifold;
in this way these placements in C0 in many cases determine the accompanying mi-
croplacements as well; there is no restriction on the dimension of a tangent-space W
in B; even if the underlying manifold of B is only 3; 2; 1; or 0-dimensional.

Theorem. The above construction yields an example of a body with microstructure;
if we assume E0 is ordinary space. In fact; not only G; but all endomaps g of E0 act
on C; provided g preserves C0.

Proof. g · 〈x; a〉 = 〈gx; grad(gx)〉 if a = grad(x). The condition that two endomaps
di@ering only by a translation � act the same on the M-component of C; is veri/ed
by the following calculation:
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Suppose

Zg= �g; �T = 〈�; 1〉
in the given trivialization.
Then

〈 Zg; Zg′〉= Zg T = �TgT

= 〈�; 1〉〈g; g′〉= 〈�g; g′〉

= 〈 Zg; g′〉:

IV

Although we have referred to “ordinary” di@erential equations in this discussion,
thus far nothing in the formal results requires one-dimensionality of the in/nitesi-
mals; our prolongation operators may relate part-icles (qualitatively diminutive parts)
of higher-dimensional space. We could impose geometrical conditions on our basic T
such as contractibility i.e. TT connected, which suggests that the dimension of T is not
too small, and commutativity of the point-preserving part R of TT , which suggests that
the dimension of T is not too large. Here I heuristically refer to a still not developed
theory of even more re/ned dimensions within the global dimension ). However, the
usual meaning of “partial di@erential” equations refers to another aspect, namely that
the laws themselves have in/nitesimal support, with respect to a body over which the
con/gurations are functions or distributions.
The speci/c examples of such ATOs that may be useful as in/nitesimal bodies are

typically spectra of both Weil and Gorenstein algebras, that consist of, or are closely
associated with, quantities nilpotent of second order (x3 = 0). That is more or less
independent of whether the whole topos, or speci/cally the monoid (TT )(T

T ), consists
of algebraic, analytic, or C∞ maps or something in between.
A question that may be more than a metaphysical speculation is whether the

Pythagorean metric on space leads to the second-order modeling of states of becoming
as ()T rather than as longer histories or vice versa. In any case, the fundamentally
quadratic character of the basic in/nitesimal spaces is fairly /rmly entrenched, even
in non-Euclidean geometry, general relativity, etc. and in the following discussion we
just accept it.

De�nition. If a space X is equipped with a homogeneity; i.e. an object of the topos
of actions of the multiplicative monoid R; then to some maps X → Q; where Q also
has a homogeneity; for example Q = TT or Q = R; one can attribute a degree in the
classical sense:

f( x) =  df(x)

where ()d is a homomorphism of monoids R → R. The action of  =0 retracts X onto
the /xed-point subspace E; and as in the case E = 1 we may call that subspace the
origin. A homogeneous subspace of X is in a neighborhood of order6 n of the origin
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if all R-valued homogeneous functions of degree greater than n vanish when restricted
to the subspace.

Proposition 8. If X is a space with homogeneity and if B is a neighborhood of the
origin of order 2; then any function f homogeneous of degree 1 satis<es f3 = 0
on B.

Proof. Both the multiplication of functions and the acting homogeneity involve at
bottom the same composition in TT ; but within the commutative R; thus degrees add
in the expected way.

A fundamental construction of algebraic geometry is the attempt at contravariant
reconstruction of a space from the algebra of functions on it, the latter construed as
a discrete space equipped with operations. If we consider a space X equipped with
homogeneity, with Vn ⊂ RX the spaces of homogeneous functions for the various
homomorphisms ()n :R → R, in particular V0 = RE , then on the discrete spaces

An = E(1; Vn)

we have a symmetric bi-homogeneous “form”

A1 × A1 → A2:

If the whole space X is of order 2, connected (E=1) and “aSne”, then it is determined
as the spectrum of the algebra

A0 + A1 + A2:

Conversely, the category of all quadratic forms can be embedded in commutative(!)
algebra this way. The basic case where V0; V1; V2 are all isomorphic to R occurs very
often. The ring as such is the cohomology ring of several important spaces, with
various gradings. The fact that the gradings of the cohomology rings come from  -ring
structures drastically restricts what the top grade can be, as described by Eckmann in
his beautiful paper [5]. Fixing the 0, 1, 2 grading by nilpotency degree, the spectrum
of any quadratic “form” can be de/ned to consist of graded and homogeneous maps
into this basic three-dimensional algebra. Two important classes of quadratic “form”
can be distinguished.

De�nition. A homogeneity space B of order 2 is Weil if V0 ≈ R and Gorenstein if
V0 ≈ V2. The Gorenstein–Weil algebras where V ≈ R3 and where the quadratic form
has invertible gradient are called supports of Laplacians [8].

Proposition 9. The free Weil space of order 2 on a three-dimensional V has a
10-dimensional function algebra. Its Gorenstein–Weil subspaces of order 2 have <ve-
dimensional function spaces. Smaller subspaces include the <rst-order Weil algebra
with four-dimensional function space and the origin which is a Weil space of order
zero.
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The sort of in/nitesimal structure described in the proposition, at each point of a
continuous body, will be relevant in the analysis of the contact forces involved in a local
constitutive response functional. With more involved microstructures, other ATOMs of
the kind discussed in part III are active at every point.
One aspect of the uni/cation of continuum physics provided by the smooth topos

setting is that to an important extent in/nite-dimensional systems such as electromag-
netism, /nite systems of mass-points, and extended mass-points or particles can be
treated in the same way, recognizing of course the di@erences, e.g. that non-trivial
di@erential operators or laws of in/nitesimal support may be relevant. For example

De�nition. A scalar mass distribution on a body B is an R-homogeneous retraction
RB → R onto the constants.
Here the retraction condition means that we have normalized the total mass to be

1, appropriate if we are not considering other bodies, and we are of course using
the classical Riesz interpretation of extensive quantities as integration processes on
intensive quantities. Also, positivity requirements not discussed here would be required
to distinguish mass from charge.

Proposition 10. Even on a one-point body; scalar mass distribution is not a scalar.

Proof. That is; the mass distribution is not just evaluation at the point; nor is it
determined by its total (= the integral of the function 1). Speci/cally; if RB is the
10-dimensional Weil algebra referred to in Proposition 9; then evaluating the mass
distribution just at the quadratic top-degree portion yields an element of the six-
dimensional space of possible Euler tensors [3].

Remark. The dimension of the state space (EB
0 )

T of the typical quadratic ATOMs
B mentioned is 60; or 30 if one models B merely as a Gorenstein Laplacian support.
That of course assumes the simplest tangent bundle model of states of becoming; longer
histories would involve more states. The constitutive response functionals for a general
body include; as an ingredient of their domain; the mutual forces between the parts
of the body. Noll [11] considers those interactions to be described by a vector-valued
bi-measure on the body; as before; let us interpret such extensive quantities themselves
as functionals on intensive ones; and also interpret a bi-measure as an extensive quantity
on the product B×B. Assuming that the vectors are three-dimensional; we see that the
dimensionality of the space

HomR(RB×B; V )

of such internal interactions of our ATOM B is 300; or

3× 102 − 10
2

= 135

if we consider only anti-symmetric (action = reaction) interactions. Although it has been
customary since von Neumann to consider that the state space of even a single particle
is in/nite-dimensional; these numbers show that at least for engineering purposes a
vast variety of constitutive relations is available at the quadratic ATOM level.
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