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EXPLICIT FOUNDATIONAL CONCEPTS IN THE TEACHING OF 
MATHEMATICS 

[As the organizers requested, this article has a non-technical component. I share the 
motivation of that request, since it reflects a desire to convey to the general reader a sense of the 

importance of foundational questions. On the other hand, my space is limited, so I have mainly 
sketched expositions which teachers with some background will be able to develop. I suggest that 
readers of this book should become acquainted with the rudiments of category theory, and I hope 

that the glimpses I am able to give here will provide further motivation for such a study.] 
- 

Mathematics education is closely linked with the foundation of mathematics; 

only the teaching and learning process can transmit, to those who will apply it, the 
foundation that has been concentrated in any given epoch. The design of foundation 

is thus strongly influenced by the needs of education. An outstanding example is 

Richard Dedekind’s struggle 150 years ago to find the clearest way to explain 
differential calculus to his students at the Zurich Politechnicum, a struggle which 
resulted in his famous analysis of the continuum, now an icon of foundations. Some 
more recent developments that are claimed to have foundational importance, such 
as elementary topos theory, were also strongly influenced in their origin by the need 
to explain calculus. Teaching can incite individual scientists to discover — and make 
explicit — concepts that before had been implicit in collective thinking, and in turn, 
the explicit concepts accelerate learning, as well as research. 

The principle “avoid concepts” 1s proposed as pedagogical doctrine in the US 

and in other countries, justified by the pragmatic claims that concepts do not lead 
immediately to the needed applications or that concepts are too difficult to teach. In 
this note 1 want to oppose these mystifications. 

Explicit concepts, definite enough to be the basis of reasoning, are indispensable 
to applications and to education. Though it is clear that the concepts that are 

concentrated from applications may sometimes need testing to evaluate their 
consistency, and it is also clear that much work is involved in presenting concepts 
in such a way that they can be understood by all the students who consciously 
participate in learning, such presentations need not be burdened with the historical 
constructions that have been used to establish consistency. For example, a perfectly 
rigorous treatment of infinite-dimensional differential geometry (that is, of the 
mathematics underlying the everyday physics of continuous bodies and waves), 

does not have to be preceded by a long detour into topological vector spaces or 
countable additivity, nor does it require an elaborate arbitrary build-up of atlases 
of charts, based in turn on rituals devised by Bolzano and Cauchy, based in turn on 
a cumulative hierarchy of sets. All those steps might be useful in developing some 
particular aspect of the subject, but they should not be a barrier that prevents people 

from learning to work rigorously-. 
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I want to discuss four examples of concepts that can be made to scem “too 
advanced to teach” by a culture that exploits the unstated assumption that the above 
pyramidal sort of foundation is the only rigorous one. Even those teachers who may 
not agree with the thesis of this article concerning the origin of foundations, may find 

that the clear introduction of these concepts permits a freedom and a confidence for 
further advance that is not possible when the concepts are left unmentioned. 

(1) A concept that can usefully be made explicit early in school is that of 

homomorphism. There are basic examples, such as angle measurement and Napier’s 
map from multiplication to addition. The concept of homomorphism is helpful in 
understanding why the importance of Napier's achievement remains undiminished 

despite the disappearance of the slide rule. More generally, there is a very useful 

principle that a transformation of systems of intensive quantities corresponds 

(contra-variantly) to a smooth transformation of their domain spaces if and only if 

the transformation satisfies a few algebraic tautologies. This principle is a theorém 
[9] in so many varied categories that in applications it can be taken as axiomatic in 

its own right; but it is also intuitive: for example, if one comes upon a probability 
distribution for which every random variable has standard deviation zero, there 
should be a point at which the whole distribution is concentrated. 

Precise reasoning about the world — and also intuitive reasoning - involves 
frequent replacement of intensively variable quantities by constants. That replacement 

is effected by distributions, or extensive quantities. Inaccuracy in such reasoning can 
result from failing to recognize these concepts and thus failing to sufficiently investigate 

the variety of distributions. This variety can be limited by the further axiom that defines 

the notion of averaging process: if the variable quantity happens to be constant, then its 

expectation is the same constant; but there is typically still an infinity of such averaging 
processes. Below we will return to a frequent paradigm that generates concrete notions 
of distribution, but first I want to emphasize the simplicity of generality. 

(2) A concept which needs to be made explicit for everyone is the concept 
of functional. The claim that it 1s “too advanced™ may find favor with those who 
have endured pyramidally-founded courses; in some context all the material in 

those courses is required, but almost none of it is necessary for the basic concept 
of functional. That concept is just this: in the dependence of the one quantity z 
on another variable quantity f, a whole panorama of information within f may be 

required to determine one value of z (for example, the behavior z at this moment 
of a sword - or a horse shoe — depends on the whole history f of its tempering by a 

craftsman). The concept of functional can become the basis of rigorous reasoning if 
we isolate the notion of a map with some specified target Z, 

Y - > Z 
but whose source Y is a function space (or perhaps a subspace of a function 

space.) The meaning of function space is uniquely determined by the tautology that 
maps 

X 
A—>Y 

from any space A are in natural bijection with maps 

AXA —>Y 
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a bijection that has been fundamental since the earliest days of the calculus of 
variations. This precise meaning of functional and this uniqueness of the structure 

of function space holds within anv given category in which the function spaces exist. 
There arc many such categories and greatly simplified methods for constructing 

them have been developed in recent decades. Much basic reasoning is independent 
of the category one might choose and indeed, as I showed in my thesis [5], the 

assumption of the function space functor can be used as a direct axiom on a category, 
with powerful consequences. 

Around the time when the concept of functional was coming to be recognized 

by Ascoli, Volterra [8], and others, and after over 150 years of investigation — in 
the calculus of variations — of functionals of real- and vector-valued functions, the 
functionals of truth-valued functions were isolated and incorporated into the logical 
calculus under the name of existential and universal quantifiers. 

(3) A concept that should be explicit after 300 years of differential calculus is 

the concept of tangent, which expresses in a precise way the principle that, in the 

infinitely small,,rcurves become straight. To every smooth space X is associated the 

smooth space X of all tangents to X, and this relation is functorial in the sense that 
for every smooth map X  f,_ Y, there is an induced smooth map 

X' Y 
and if Y _&_ 7 is another smooth map, then 

( f)T___ ng'l' 

for the composite maps. That functoriality is the chain rule of differential 

calculus. There is a natural map)\ -~ > Xindicating for each tangent vector its base 
point of origin and hence, for cach point x, there is the subspace T, of X' consisting of 
all tangents based at x. For any “curved” mapf, if fx =y, then the restricted map 

T, i, T, 

is “straight” in that it satisfies the homomorphic property 

£, () = M) 
for all natural stretchings v of the tangent concept. (In a smooth category, this 

one homomorphic property implies all the other properties commonly associated 
with straightness, at least for a dense subcategory of tangent spaces.) 

There are many functors, but of course the basis of differential calculus is 

the special nature of the tangent functor in particular: if judiciously chosen, 

some of its special properties serve well as axioms for direct application. Yoneda 
and Grothendieck [3] emphasized forty vears ago an important method for 

analyzing particular functors, exploiting the representability of some functors. 

Representability means that there is a single space T which concentrates the 
essence of the uhole functor; more precisely, the functor is (up to isomorphism) 

just the process ( ) of forming function spaces with arbitrary target spaces, but 

fixed source T. A lemma of Yoneda implies that if a functor is representable, then 
the representing space is unique, so that the study of properties of that space is an 

important support for the study of the functor; for example, the natural operations 
% on the functor can all be represented bv endomorphisms of the representing 
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space. It is fortunately relatively easy to construct categories that contain ordinary 
space-time, etc., but where the tangent bundle functor becomes representable; in 

other words, the tangents themselves are just infinitesimal paths. (This justifies my 
choice of notation ()" for the tangent bundle functor). Simultaneously, one obtains 
a universal formula 

NXA\T yI\X 
(Y7) =(Y") 

for the tangent space of any infinite-dimensional function space. That formula 
is rather complicated to prove if the space T is not mentioned. It is fortunate that no 
nonstandard maps between (or points of) the ordinary spaces are introduced by this 

construction, and also fortunate that T itself is quite simple: it has just ane point and 
its function algebra is only two-dimensional. 

The recognition of the representability of thetangent functor had been advocated 

in the past, with varyving degrees of explicitness, by Leibniz, Study, and Kiihler, and 
is now common in the theory of algebraic groups [1], though not yet in the calculus 
of variations and in functional analysis. The resulting role of nilpotent quantitics 
is quite compatible with standard practice in physics and engineering, but in the 
past, that observation had remained underdeveloped, partly because kecping track 
of the various quantities can appear complex without the recognition of the principle 
that every map has a definite target. That principle was forced on category theory by 
algebraic topology, where the behavior of the Poincaré and Hurewicz functors would 
be incomprehensible without it. (There is a frequent necessity to change the source 
and target, but this is effected by composing with other maps, yielding new maps 
with possibly different properties.) | 

(4) 1 wish to emphasize the simplicity and fundamental nature of the concept 

of extensive quantity. Already Grassmann [2] had lamented the tendencv to 
recognize only intensive quantities, thus denying extensive quantities their.just 

status. Subjective idealist philosophers might claim that extensive quantity does not 
exist, while objective idealist philosophers (like Hegel) might claim that there is no 

difference. The simple fact is that quantities such as mass, charge, volume, energy, 

entropy, and probability are fundamentally extensive rather than intensive, and the 
contrast is still used by teachers of thermodynamiecs. Foundations of mathematics 
should lend support to such aspects of teaching. 

Ubiquitous in mathematics is a pair of modes of variation of quantity (which 
of course get combined in complex situations), namely covariant and contravariant 
dependence on the domain space. On the one hand, contravariant dependence 
implies such features of intensive quantity as 

(a) the inclusion of constant quantities into each algebra of variable quantities; 

(b) the possibility of evaluating any variable quantity at any point of its domain 
of variation; and 

(c) the typical problem of extending a variable quantity to a larger domain. 

Ontheotherhand, none of those features apply in general to extensive quantities. 
The extensive mode of variation has features shared by any covariant functor E on a 

category of spaces. (For nontriviality, assume that E(1) # 0 where 1 is the one-point 

space): The covariant functoriality itself means that for each smooth map X - > 
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Y there is an induced “push-forward” map EX —> EY, and that composite maps 
induce composites; hence there is the support problem of determining whether a 

given extensive quantity in E(Y) is supported on X ——> Y in the sense that it comes 
from somec extensive quantity in E(X). For example, the distribution of whales on 

the earth Y comes from the distribution of whales in the ocean X, hence the former is 

“supported” on the inclusion of X into Y. 

There are many problems in combinatorial probability that gifted students 

solve “intuitively”; but a uscful gift to all students would be the recognition that 

the main step in the solution is often the analysis of a distribution of interest as the 
image along an appropriate map of a distribution on some other space X, where 

this antecedent distribution is uniform, i.e. invariant under all automorphisms 
of X. Try to calculate the distribution of results of rolling a pair of dice, where the 

crucial ingredient is a summation map to the 11-point space Y from a 36-point 
space X. 

Any covariant functor E will have special relation to the one-point space 1. That 

space is characterized by the property that any space X has a unique map X > 1 
to it. The functoriality thus induces 

EX) Jx_EQ) 
which can be so denoted because it assigns to each distribution in X its total. 

The water in the clouds above a city has a complicated distribution but, in particular, 
has a total. Experts will recogmze that the usual distributions of compact support 
constitute a good example of such a functor E, but so do measures, in a different 

category. On the other hand, the maps1 - > X are the points x of X and applying 
the functoriality of E, we obtain for each point x a map 

E(1) %%, E(X) 

that assigns to each possible total a distribution on X that has that total, but 

which is supported on x. Thus the dreaded Dirac delta distributions are actually a 

tautology of great generality when their extensive nature is recognized; if one tries 

instead to present them as generalized intensive quantities, the resulting mysteries 
and paradoxes can block the students’ progress. 

As hinted above, one can go quite far with model-building on the basis of simple 
direct axioms about types E of extensive variation of quantity, but one does neced 
explicit examples. A general kind of example that might be called the Riesz paradigm 
is available in any category having the exponential (= function space) construction, 

namely, given two spaces R and V and a system A that operates on both, define 

E(X) = Hom z(R",V) 
(RN) - : 

as the subspace of V' " consisting of all those ¢ (wwayvs of reducing R-valued 

intensively-variable quantities f to V-valued constants) that satisf the condition 

o[rt] =Aolt] 

forall 7 in A. Often one chooses R and A so that E(1) =V, in which case the Dirac 

delta is concretely realized as evaluation and provides an inclusion X -- -> EX. 
. . . . R 

On the other hand, if V= Rand if A is chosen quite large, forexample A = R, then 
the intuition of variables with zero variance strongly suggests that X -—> EX should 
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be an isomorphism for suitable V, i.e. that the only V-valued extensive quantities that 
are so highly homogeneous, are just the point-evaluations. The only spaces X for which 
such a principle is not true have so far come from the world of measurable cardinals, 
but that world is demonstrably quite remote from the world of ordinarv pure and 
applied mathematics. Our foundation should take notice of this fact. 

There are of course other concepts (decisive abstract general relations) that 
compassionate teachers can present to students in a way that helps to illuminate 
their path. A small system of concepts — consistently chosen — serves directly the 

everyday learning, development and use of mathematics; moreover, the principles 
that characterize these concepts can in fact be shown to logically imply all of known 

mathematics. 
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