
Chapter 16-

Those concepts that are historically stable tend to be those that in some
way reflect reality, and in turn tend to be those that are teachable.
" Mathematical" should mean in particular " teachable," and the modern
mathematical theory of flexible categories can indeed be used to sharpen
the teachability of basic concepts. A concept that has enjoyed some his-
torical stability for 40,000 years is the one involving that structure of a
society that arises from the biological process of reproduction and its
reflection in the collective consciousness as ideas of genealogy and kinship.

Sophisticated methods for teaching this concept were devised long ago,
making possible regulation of the process itself. A more accurate model
of kinship than heretofore possible can be sharpened with the help of
the modern theory of flexible mathematical categories; at the same time,
established cultural acquaintance with the concept helps to illuminate
several aspects of the general theory, which I will therefore try to explain
concurrently.

Abstracting the genealogical aspect of a given society yields a mathe-
matical structure within which aunts, cousins, and so on can be precisely
defined. Other objects, in the same category of such structures, that seem
very different from actual societies, are nonetheless shown to be impor-
tant tools in a society's conceptualizing about itself, so that for example
gender and moiety become labeling morphisms within that category.
Topological operations, such as contracting a connected subspace to a
point, are shown to permit rationally neglecting the remote past. But such
operations also lead to the qualitative transformation of a topos of pure
particular Becoming into a topos of pure general Being; the latter two
kinds of mathematical toposes are distinguished from each other by pre-
cise conditions. The mythology of a primal couple is thus shown to be
a naturally arising didactic tool . The logic of genealogy is not at all 2-
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valued or Boolean, because the truth-value space naturally associated
with the ancestor concept has a rich lattice structure.

As John Macnamara emphasized, an explicit mathematical framework
is required for progress in the science of cognition, much as multidimen-
sional differential calculus has been required for 300 years as a framework
for progress in such sciences as thermomechanics and electromagnetics.
I hope that the exam pIes considered here will con tri bu te to constructing
the sort of general framework John had in mind.

Although a framework for thinking about thinking would be called
" logic" by some ancient definitions, in this century logic has come to have
a much more restrictive connotation that emphasizes statements as such,
rather than the objects to which the statements refer; this restrictive con-
notation treats systems of statements almost exclusively in terms of pre-
sentations (via primitives and axioms) of such systems, thus obscuring the
objective aspects of abstract generals that are invariant under change of
presentation. About 100 years ago the necessary objective support for this
subjective logic began to be relegated to a rigidified set theory that shares
with mereology the false presupposition that given any two sets, it is
meaningful to ask. whether one is included in the other or not. Although
the combination of narrow logic and rigidified set theory is often said to
be the framework for a " foundation of mathematics," it has in fact never
served as a foundation in practice; for example, the inclusion question is
posed in practice only between subsets of a given set, such as the set of
real numbers or the set of real functions on a given domain. There are
many different explicit transformations between different domains, but the
presumption that there is a preferred one leads to fruitless complications.

The development of multidimensional differential calculus led in par-
ticular to functional analysis, algebraic geometry, and algebraic topology,
that is, to subjects whose interrelationships and internal qualitative leaps
are difficult to account for by the narrow and rigidified " foundations."
This forced the development of a newer, more adequate framework
(which of course takes full account of the positive results of previous
attempts) 50 years ago, and 20 years later the resulting notions of cate-
gory, functor, natural transformation, adjoint functor, and so on had
become the standard explicit framework for algebraic topology and alge-
braic geometry, a framework that is even indispensable for the commu-
nication of many concepts. Then, inspired by developments in mechanics
and algebraic geometry, it was shown how a broader logic and a less rigid
notion of set are naturally incorporated in the categorical framework.
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Toposes are categories of sets that have specified internal cohesion and
variation and whose transformations are continuous or equivariant. The
infinite variety of toposes now studied arises not in order to justify some
constructivist or other philosophical prejudice, but in order to make use-
fully explicit the modes of cohesion and variation that are operative in
multidimensional differential calculus. The internal logic of to poses turned
out to be that which had been presented earlier by Heyting. Heyting logic
(and co- Heyting logic) describes inclusions and transfoffi1ations of subsets
of such sets in a way that takes account of the internal cohesion and
variation, refining the fragmented and static picture that the still earlier
approximation by Boolean logic provides.

I will explore here two examples showing how the categorical insight
can be used to make more explicitly calculable, not only the more overtly
spatial and quantitative notions, but also other recurring general concepts
that human consciousness has perfected over millennia for aiding in the
accurate reflection of the world and in the planning of action. The two
examples are kinship, in particular, and the becoming of parts versus the
becoming of wholes, in general. Since the narrowing of Logic 100 years
ago, it has been customary to describe kin ships in teffi1s of abstract
" relations" ; however, if we make the theory slightly less abstract, the
category of examples gains considerably in concreteness and in power to
represent concepts that naturally arise. Becoming has long been studied
by resolving it into two aspects, time and states, with a map of time
into the states; but when we consider the becoming of a whole "body"
together with that of its parts (e.g., the development of collective con-
sciousness or the motion of the solar system), there are several " conflict-
ing" aspects that we need to manage: the collective state " is" nothing but
the ensemble of the states of the parts, yet the constitutive law deteffi1in-
ing what the state (even of a part) " becomes" may depend on the state of
all; the time of the whole may be taken as a prescribed synchronization of
the times of each part, yet the news of the collective becoming may reach
different parts with differing delays. A general philosophical idea is that
the cohesiveness of being is both the basis in which these conflicts take
place and also partly the result of the becoming (Hegel: " Wesen ist
gewesen " - that is, the essence of what there is now is the product of
the process it has gone through). I will try to show more precisely how
the being of kinship in a given historical epoch relates to the becoming of
reproduction and of intermarriage between clans, even when this kinship
and reproduction are considered purely abstractly, neglecting their natural
and societal setting.
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(T1) Each individual has exactly one mother and exactly one father,
who are also individuals.

As a first approximation, we can explore the ramifications of this idea,
taken in itself, as an abstract theory T 1. Though we may have thought
originally of " individual " as meaning a member of a particular tribe,
there is in fact in a " theory" no information at all about what individuals
are; the mathematical concrete corresponding to the stated abstract theory
Tl is the category whose objects are sets, consisting of abstract elements,
but structured by two specified self-mappings m and f Such a structured
set can be considered as a " society." We can immediately define such
concepts as "a and b are siblings" by the equations am == bm and af ==
bf , or " b's maternal grandfather is also c's paternal grandfather" by the
equation bmf == cff . (In the Danish language 'morfar ' means mother's
father, 'farfar ' means father's father, similarly 'farmor' and 'mormor';
and young children commonly address their grandparents using those
four compound words.) There is a great variety of such systems, most of
which seem at first glance to be ineligible, even mathematically, for more
than this verbal relation to the kinship concepts; for example, I cannot
be my own maternal grandfather. However, if we take the theory and the
category seriously, we will find that some of these strange objects are
actually useful for the understanding of kinship.

As is usual with the concrete realizations of any given abstract theory,
these form a category in the mathematical sense that there is a notion of
structure-preserving morphism X - t Y between any two examples: in this
case the requirement on ljJ is that  jJ(xm) ==  jJ(x)m and ljJ(xf ) ==  jJ(x)f for
all x in X. (It is convenient to write morphisms on the left, but structural
maps on the right of the elements; in the two equations required, the
occurrences of m and f on the right sides of the equality refer to the
structure in the codomain Y of the morphism.) There are typically many
morphisms from given domain X to given codomain Y. If X - t Y ! z
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16.1 A Concrete Category Abstracting the Notion of Reproduction

I want to consider general notions of kinship system, as suggested by
known particular examples. The following fundamental notion was ela-
borated in collaboration with Steve Schanuel (Lawvere and Schanuel
1997).

An analysis of kinship can begin with the following biological
observation:
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are morphisms, there is a well-determined composite morphism X ~ Z,
and for each object X, there is always the identity morphism from X to
itself. Two objects Xl and X 2 are isomorphic in their category if there
exists a pair of morphisms Xl --t X2 --t Xl with both composites equal to
the respective identity morphisms. Most morphisms are not isomorphisms,
and they indeed do not even satisfy the requirement of " injectivity,"
which just means that the cancellation law, ljJXl == fjJx2 implies Xl == X2,
holds for fjJ. If a morphism ~ is in fact injective, it is also called "a sub-
object of its codomain, which taken in itself is the domain." (Contrary to
some rigidified versions of set theory, a given object may occur as the
domain of many different subobjects of another given object. A subobject
may be thought of as a specified way of " including" its domain into its
codomain.) An element y is said to "belong to" a subobject ~ (notation:
y G~) if there is x for which y == ~x; this x will be unambiguous because
of the injectivity requirement on ~. Here by an element of X is often
meant any morphism T - t X ; such elements are also referred to as figures
in X of shape T, but often we also restrict the word 'element' to mean
'figure of a sufficient few preferred shapes' . Sometimes we have between
two subobjects an actual inclusion map ~ I S; ~2 as subsets of Y (i .e.,
Xl ~ X2 for which ~l == ~2Ct). It is these inclusions that the propositional
logic of Y is about.

16.2 Genealogical Truth, Seen Topos- Theoretically

The category sketched above, that is, the mathematically concrete corre-
spondent of the abstract theory TI of m and/, is in fact a " topos." That
means, among other properties, that there is a " truth-value" object Q that
"classifies," via characteristic morphisms, all the subobjects of any given
object. In the simpler topos of abstract (unstructured) sets, the set 2,
whose elements are " true" and " false," plays that role; for if X ~ Y is
any injective mapping of abstract sets, there is a unique mapping Y ~ 2
such that for any element y of Y, rP y == true if and only if y belongs to
the subset ~; and if two maps rPI, rP2 from Y to 2 satisfy rPI entails rP2 in
the Boolean algebra of 2, then the corresponding subsets enjoy a unique
inclusion map ~l ~ ~2 as subsets of Y (i .e., Xl ~ X2 for which ~l == ~2a).
However, in our topos, 2 must be replaced by a bigger object of truth-
values in order to have those features for all systems Y and for all sub-
systems X, ~, as explained below.

In our tapas of all Tl -societies, there is a particular object I , which as an
abstract set consists of all finite strings of the two symbols m and f, with
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the obvious right -action that increases length by 1, giving its cohesiveness
and variation ; in particular , the empty string 1 I is the generic individual ,

all of whose ancestors are distinct . A concrete individual in a society X is

any morphism I ---+ X ; in particular , the infinitely many endomorphisms
I ~ I are easily seen to be in one-to -one correspondence with the strings
in I . Composing with the two endomorphisms m and f , which correspond
to the two strings of length 1, completely describes, in the context of the

whole category , everything we need to know about the particular internal

structure of X : the actions xm , x f are realized as special cases of the

composition of morphisms. The condition that every morphism X ! Y
in the topos must satisfy is then seen to be just a special case of the asso-
ciative law of composition , namely , the special case in which the first of

the three morphisms being composed is an endomorphism of I . The facts

stated in this paragraph constitute the special case of the Cayley - Y oneda
lemma , applied to the small category W that has one object , whose
endomorphisms are the strings in two letters , composed by juxtaposition ;
a category with one object only is often referred to as a monoid .

With loss in precision we can say that x ' is an ancestor of x in case there

exists some endomorphism w of I for which x ' == xw . In the particular

society X , the w may not be unique ; for example , xmff == xfmf might
hold. But the precision is retained in the category W / X , discretely fibered
over W, which is essentially the usual genealogical diagram of X . The
correlation of the reproductive process in X with past solar time could be

given by an additional age functor from this fibered category to a fixed
ordered set; a construction of Grothendieck (1983) would permit inter -
nalizing such a chronology too in Tl 'S topos .

N ow we can explain the truth -value system. The subsets of I in the

sense of our topos are essentially just sets A of strings that , however , are
not arbitrary but subject to the two conditions that if I ~ A is a member

of A , then also wm and w f must be members of A . Thus , A can be

thought of as all my ancestors before a certain stage, the antiquity of that
stage depending however on the branch of the family . These As constitute
the truth -values! To justify that claim , we must first define the action of m

andfon As; this is what is often thought of as " division " :

A : m == {w s W : mw sA } ,

A : f == { w G W : fw G A} .

It is easily verified that these two are again subobjects of I if A is. Note
that A : f consists of all my [ather 's ancestors who were in A . The truth -
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tj>(y) == {W 8 W : yw 8 ~} .

, to the question' 'Precisely how Irish is y?"This is the

value true is A :=: W, the whole set of strings, and union and intersection
A u B, A n B are the basic propositional operations or, and on truth-
values. The operation not A of negation does not satisfy all the Boolean
laws, since it must again yield a subobject of I :

not A == { W B W : for all v B W, wv does not belong to A}

is the set of all my ancestors none of whose ancestors were in A, so (A
or not A) is usually much smaller than true. Why does the object Q thus
defined serve as the unique notion of truth-value set for the whole topos?
Consider any subset X ~ Y in the sense of the topos; then there is a
unique morphism Y ~ Q such that for all individuals I ~ Y in Y,

y G ~ if and only if cjJ(y) == true.

The value of </> on any element y is forced to be

16.3 How to Rationally Neglect the Remote Past

Every X is a disjoint union of minimal components that have no mutual
interaction; if we parameterize this set of components by a set IIo (X ) and
give the latter the trivial (identity) action of m, f, then there is an obvious
morphism X --+ IIo (X ). If llo (X ) :=: 1, a one-point set, we say X is con-
nected; that does not necessarily mean that any two individuals in X have
some common ancestor, because more generally connecting can be veri-
fied through cousins of cousins of cousins, and so on.

An important construction borrowed from algebraic topology is the
following :

Given a subobject A ~ X , we can form the " pushout" X mod A that
fits into a commutative rectangular diagram involving a collapsing mor-
phism X --t XmodA and an inclusion llo (A) ~ XmodA as well as the
canonical A --t llo (A) and satisfies the universal property that, if we are
given any morphism X - t Y whose restriction to A depends only on
no (A), then there is a unique morphism XmodA ~ Y for which t/I is the
composite, t/I 0 following X -+ X mod A, and which also agrees on no (A)
with that restriction.

This X mod A is a very natural thing to consider because practical
genealogical calculations cannot cope with an infinite past. For example,
the Habsburg X are mainly active over the past 1,000 years and the Orsini



418 Lawvere

ovrer the past 2 , 000 years . But this collapsing of the remote ancestors A to

IIo ( A ) introduces an interesting idealization ; for simplicity we consider

the case where A is connected , IIoA == 1 . Then the construction has given

rise to a morphism 1 - * X mod A that is the residuum of A . But what is a

" point " ( == figure of shape 1 ) in a topos like ours ? Since m and fact

as identity in 1 , a point ( e . g . , the point of X mod A that has arisen ) is a

special sort of individual x that is its own mother and father :

xm == x == xi .

This idea of a superindividual is of course merely a convenience in genea -

logical bookkeeping .

16 . 4 Deepening the Theory to Make Gender Explicit

A reasonable gender structure is not definable in the abstract theory T 1

above , since there is no requirement that the values of the operator m be

disjoint from the values of the operatorfand also no way of determining

the gender of infertile individuals . So as usual we refine our theory to a

richer one :

( T 2 ) In addition to T 1 , every individual has a definite gender , every

individual ' s mother is female , and every individual ' s father is male .

The corresponding category of all concrete applications of T2 will also be

a topos and in fact have a direct relation to the topos of TI ' Na ~ ely , in

the first topos there is a particular object G with only two individuals

called male andfemale and where the two structural operations act as the

constant maps . Our refined topos has objects that may be described as

pairs X , y where X ~ G is a morphism in the first tapas and has as mor -

phisms all triangular diagrams [X ~ G , X ~ Y , Y ~ G ] in the first tapas

for which Jtj ; == y ; the codomain of this triangle is defined to be the pair Y ,

J . The conditions

y ( xm ) == ( yx ) m

and

y ( xf ) == ( yx ) f

that morphisms must satisfy state in this case that y is a compatible

gender - labeling , and the further condition on a triangular diagram means

that morphisms in our refined tapas moreover preserve gender . That

applies in particular to the individuals in X that happen to be ( in our



A still further refinemen t makes precise the idea of a society equipped
with a strategy for incest avoidance. The simplest idea T 3 of such is that of
(matrilineal) moiety labeling, which can be explained in terms of another
two-individual application C of T 1. The two " individuals" are called Bear
and Wolf in Lawvere and Schanuel1997. The idea is that the moiety of
any individual x is the same as that ofx 's mother and distinct from that of
x's father. Thus, on the two individuals in C, m acts as the identity,
whereas f2 == id but f # id. Any T I-respecting morphism X -+ C is a
labeling with the expected properties, and commuting triangles over C
constitute the morphisms of a further topos that should be investigated.
However, I will denote by T3 the richer abstract theory whose applica-
tions are all the T I-applications X equipped with a labeling morphism
X -+ G x C. Thus, in T3's topos there are four generic individuals I (one
for each pair in G x C), morphisms from which are concrete individuals
of either gender and of either Bear or Wolf moiety.

16.6 Congealing Becoming into Being
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16.5 Moieties
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purely reproductive sense ) spinsters or bachelors . This tapas has two

generic individuals , because labeling maps I - + G can map 11 either to m

or to ! The terminal object of this new tapas is actually IG so that a point

in the new sense is really the " locus of a point moving virtually between m

and f " ; more exactly , a morphism IG - + Y in this tapas amounts to an

Eve / Adam pair for which

e f = = a f = = a & em = = am = = e .

If we construct the pushout along A - + IIoA of a subobject A < : - + X in the

sense of this topos , we get in particular lloA C - ? - X / A , which specifies a

different Eve / Adam pair for each of the mutually oblivious subsocieties

among the specified ancestors .

According to the criteria proposed in La wvere 1991, the three toposes
thus far introduced represent particular forms of pure becoming, because
they satisfy the condition that every object X receives a surjective mor-
phism from another one E that has the special property

Zl W == Z2W implies ZI == Z2
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for any given w in Wand any two individuals Zl , Z2 in E . This " separable

covering " E of X is achieved through refining each individual ( if neces -

sary ) into several individuals with fonnally distinct genealogies ( e . g . ,

xmf # yf in E even if y = = xm in X ) . However , by restricting to certain

subcategories consisting only of objects that contain something roughly

like the Eve / Adam pair , we obtain toposes that have instead the qualita -

tive character of pure being ; for example , the Habsburg era had a certain

quality of being ( and was the basis for a lot of motion ) .

More precisely , let us consider various theories corresponding to

monoid homomorphisms

W ~ M

that are epimorphic . Epimorphic homomorphisms may be surjective

( induced by a congruence on W ) , or may adjoin at most new operator

symbols that are two - sided inverses of operator symbols coming from W ,

or may involve a combination of these two kinds of " simplifications " of

W . Such a homomorphism gives rise to a well - defined subcategory of Tl ' S

topos , namely , the one consisting of all those systems X satisfying the

congruence or invertibility conditions that become true in M . ( For anal -

ogous subcategories of the other two toposes , we would need to consider

epimorphic functors

W / G ~ D

and

W / Gx C ~ E

to small categories D or E of two ( respectively four ) objects . ) The result -

ing subcategories , although toposes , are not subtoposes but " quotient

toposes . " Here a quotient morphism of toposes , compressing a bigger

situation into a smaller situation , involves a full and faithful inverse

functor p * ( the obvious inclusion in our example ) and two forward func -

tors p ! and p * that are respectively left and right adjoint to p * in the sense

that there are natural one - to - one correspondences

PIX - * Y Z - * p * X

X - * p * Y p * Z - * X

between morphisms , for all sets X defined over the big situation and all

Y , Z defined over the smaller one . Note that the notion of morphism is

the same in both situations ; that is what it means to be full and faithful .



These adjointnesses are the refined objective version of relations whose

subjective reflections are the rules of inference for existential quantifica -

tion p !, resp. universal quantification p * of predicates relative to a sub-
stitution operation p * (indeed , p * preserves coproducts and products of

objects, as is subjectively reflected in the fact that a substitution preserves

disjunction and conjunction of predicates ; it may fail to preserve the

analogous negations however , for example in the case of continuous

predicates in topology ). Specifically , p*X extracts those individuals from
X whose genealogy happens to conform to the requirements specified in

M , whereas PIX applies to all individuals in X , the minimal forcing re-
quired to merge them into a new object that conforms to M .

These facts will be used below in investigating elementary examples

of quotient toposes, in particular , some of those that seem to congeal
becoming into being .

To distinguish a topos of general pure being , I proposed in La wvere

1986 and 1991 the two criteria that llo (X x Y) == llo (X ) x llo (Y) and
that every object is the domain of a subobject of some connected object .
The first of these means that any pair consisting of a component of X and

a component of Y comes from a unique single component of the Cartesian

product X x Y ; in particular , the product of connected objects should be
again connected (since 1 x 1 == 1), which is rarely true in a tapas of par -
ticular becoming . That condition will be important for the qualitative ,
homotopical classification of the objects, but I will not discuss it further
here .

The second criterion mentioned above, that every object can be

embedded as a subobject of some connected object , has the flavor " We
are all related ," but is much stronger than merely requiring that a partic -

ular object be connected ; for example , the disjoint sum of two connected

objects, which is always disconnected , should be embeddable in a con-
nected object .

It follows from a remark of Grothendieck (1983) that both proposed

criteria will be satisfied by a topos of M -actions if the generic individual I

(== M acting on itself ) has at least two distinct points 1 ~ I . The distinct -
ness must be in a strong sense that will be automatic in our example
where 1 has only two subobjects; it is also crucial that the generic indi -
vidual I itself be connected . Part of the reason why this special condition

of Grothendieck implies the two general criteria can be understood in the

following terms: it is not that becoming is absent in a topos of general
being; rather , it is expressed in a different way . An object X may be a
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space of locations or states in the tradition of Aristotle ; that is , X is an

arena in which becoming can take place. In particular , some such spaces

T can measure time intervals and hence a particular motion in X during T

may give rise to a morphism T ~ X describing the result of the becoming
process; that is, if T is connected , if we can distinguish two instants I 4 T

called to , tl and if jltk == Xk for k == 0 , 1, then we can say that Xo became

Xl during the process 11; this is the common practice in mathematical
engineering (at least for certain categories within which it has, in effect,
become customary to work in the past 300 years). But then if we consider

tl as a subobject of T, its characteristic map from T to the truth -value

space will be a process along which false becomes true ; this in turn implies
that the truth -value space is itself connected since T is , and because of the

propositional structure of truth -values, it follows that indeed the hyper -
space, whose points parameterize the subspaces of X , is connected too . On

the other hand , in any topos any object X is embedded as a subobject of
its hyperspace via the " singleton " map . Taking T == I , it follows that in

the cases under discussion every object can be embedded in an object that
is not only connected , but moreover has no holes or other homotopical
irregularities . Note that now each individual I ~ X involves also a pro -
cess in his or her society. There are many such situations , but what can
such a process mean ?

As a simple example , suppose that we want a category of models of
societies in which genealogical records go back to grandparents . Thus , we
consider the homomorphism W ~ M onto a seven-element monoid in
which

m3 == mlm == m2

and

ml2 == m2 I == ml

hold , together with similar equations withfand m interchanged . Drawing
the obvious genealogical diagram , we see that the generic individual / in

the topos of M actions has parents that represent the first intermarriage
between two distinct lines, and that / 's grandparents are the " Eves and

Adams " of those two distinct lines. Indeed , this object [ permits a unique

gender structuring and so we may pass instead into the topos whose theory
is M / G, finding there that each of the two generic individuals [G has two
distinct points IG : 4 [ G. The " process" involved in an individual boy
[ G ~ X in a society X in this tapos is that whereby his father 's line united
with his mother ' s.



Given any object L in a topos, one can form a new topos of objects fur-
ther structured by a given labeling morphism to L . However, it is worthy
of note that in our examples, one L == G (leading to T 2) and the other one
L == G x C (leading to T3), these labeling objects belong to a much
restricted subcategory (quotient topos) within the topos of all Tl -objects.
Although the Tl topos, consisting of all right actions of the free monoid
Won two symbols, is too vast to hope for a complete survey of its objects
(as is borne out by theorems of Vera Trnkova stating that any category
can be embedded as a full subcategory of it ; see Pultr and Tmkova 1980),
by contrast these smaller toposes are more tractable.

Consider first the case G of gender in itself. It belongs to the sub-
category corresponding to W -+ W 3, the three-element monoid in which
xl == I , xm == m for all three x == 1, I , m. If we restrict attention to the
right actions of W3 only, we see that the generic individual I in the sense
of that topos has only one nontrivial subobject, which is G itself. There-
fore, the truth -value space .Q3 for that topos (in contrast to the infinite .Q
for W) has only three elements also. The most general " society" X is
a sum of a number of noninteracting nuclear families, some with two
parents and some with a single parent, and a society is determined up to
isomorphism by the double coefficient array that counts families of all
possible sizes of these two kinds. Cartesian products are easily computed.

Second, consider the simple moiety-labeler C in itself; it belongs to the
quotient topos determined by W -+ W2, the two-element group generated
by I with 12 == 1, where we moreover interpret m as 1. Here C is itself
the generic individual and has no nontrivial subobjects, so that 02 is the
two-element Boolean algebra. All right W2-actions are of the form X ==
a + bC, where a is the number of individuals fixed, and b half the number
moved, by ! These objects are multiplied by the rule c2 == 2C.

Third , we can include both G and C in a single subcategory as follows:
the infinite free monoid W maps surjectively to each of W3 and W2;
therefore, it maps to the six-element product monoid W3 x W2, but not
surjectively since the image Ws is a five-element submonoid (the missed
element is the only nonidentity invertible element in the product monoid).
The category of right W s-sets can be probed with the help of its generic
individual I , which again (surprisingly) has only three subobjects so that
Qs has again three truth-value-individuals. In I (i .e., Ws) there are besides
me my four distinct grandparents, the Tl -structure coming from the fact
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16. 7 Finer Analysis of the Coarser Theories
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that my parents are identical with my maternal grandparents in this

theory . The unique nontrivial subobject of I is precisely G x C, the label

object for our central noncollapsed theory T 3; it is generated by any single
one of its four elements . I leave it to the reader to determine a structural

description of all right W s-actions , with or without G x C labelings .

16 .8 Possible Further Elaborations

To the T2 topos (whose abstract general is the two -object category W / G)
we can apply separately our concrete construction idealizing remote

ancestors and also our refinement of the abstract general by moiety -
labeling . However , it does not seem consistent to apply both of these
simultaneously , owing to the simple group -theoretic nature of our C. A

reasonable conjecture is that tribal elders in some part of the world have
devised a more subtle abstract general C ' that relaxes the incest avoidance

for the idealized remote ancestors, thus permitting a smoothly functioning
genealogical system enjoying both kinds of advantages.

Some more general examples of simplifying abstractions include that

based on a homomorphism W ~ M n that makes every string of length
greater than n (where , e.g., n == 17) congruent to a well -defined associated

string of length n. An interesting construction to consider is the appli -
cation of the pushout construction to an arbitrary Tl -object X , not with

respect to some arbitrarily chosen remoteness of ancestry A , but with
respect to the canonical morphism p * p * X --+ X .

The need for Eve and Adam arises from the central role of self -maps as

structure in the above theories and might be alleviated by considering
instead a two -object category as the fundamental abstract general, although
possibly at the expense of too great a multiplicity of interpretations . This
category simply consists of three parallel arrows , as described in Lawvere

1989. A concrete application of this theory To involves two sets (rather
than one) and three internal structural maps

X no~' - - t X up to now

called m, f , and 8, where s specifies, for each contemporary individual , the
place of his or her " self " in genealogical history . There is a natural notion

of morphism between two such objects (involving two set-maps subject to
three equations ) yielding again a topos , whose truth -value object is finite
and illuminating to work out . To's topos has Tl 's topos as a quotient ,
because forcing the structural map 8 to become invertible yields a small
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category equivalent to the monoid W . If s is not inverted , iteration of

m andfis a more complicated partial affair : in case xm has the property

that there is a contemporary mother y for which ys = = xm , then yf is a

maternal grandfather of x ; but there may not be such a y , and on the

other hand , mathematical experience counsels against excluding in gen -

eral the possibility of several such y for a given x . If we do invert s , we

make explicit that which , in a larger sense , is the theme of this book , the

continuing role of each past individual in our cognition at present .
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