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The rigorous yet intuitive foundation for engineering mathematics outlined in

1967 (Chicago Lectures) and 1982 (Introduction SLNM 1174) is nearer now

(1997), thanks to the extensive work on ‘Synthetic’ Differential Geometry and

to the simplifications of functional analysis, in the spirit of Volterra and Silva,

flowing from the work of Bruno, Kriegl, Frölicher, and Nel (1985). Over a topos

of spaces, comonads induced by ‘fractional monads’ yield toposes in which each

object carries a particular dynamics in the sense of Galileo’s first new science:

(a) states are states of becoming,

(b) the actual law of becoming is accompanied by a homogeneous (inertial) law,

(c) and the affine difference of those laws is a vectorial specific force.

Galileo’s second new science, interpreted by Noll to mean that state spaces

be further analyzed in terms of material bodies carrying force systems subject

to constitutive relations, can seemingly be extended and clarified with aid of

map-spaces and infinitesimal objects in a topos of spaces: e.g. the Cosserats’

thin shells and Muncaster’s ‘zero’-dimensional bodies are microlinear spaces but

not traditional manifolds.1

Individuals do not set the course of events; it is the social force. Thirty-five or forty years

ago it caused us to congregate in centers like Columbia University or Berkeley, or Chicago,

or Montreal, or Sydney, or Zurich because we heard that the pursuit of knowledge was going

on there. It was a time when people in many places had come to realize that category theory

1Preliminary Report received in Montreal June 26, 1997. Lawvere’s invited address to the Special Session
on Category Theory and its Applications, at the 1997 Fall Eastern Sectional Meeting of the AMS in Montreal,
Quebec, Canada. Dedicated to Bill’s 60th Birthday.
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had a role to play in the pursuit of mathematical knowledge. That is basically why we know

each other and why many of us are more or less the same age. But it’s also important

to point out that we are still here and still finding striking new results in spite of all the

pessimistic things we heard, even 35 or 40 years ago, that there was no future in abstract

generalities. We continue to be surprised to find striking new and powerful general results

as well as to find very interesting particular examples.

We have had to fight against the myth of the mainstream which says, for example, that

there are cycles during which at one time everybody is working on general concepts, and

at another time anybody of consequence is doing only particular examples, whereas in fact

serious mathematicians have always been doing both.

1 Infinitesimally Generated Toposes

In fact, it is the relation between the General and the Particular about which I wish to

speak. I read somewhere recently that the basic program of infinitesimal calculus, continuum

mechanics, and differential geometry is that all the world can be reconstructed from the

infinitely small. One may think this is not possible, but nonetheless it’s certainly a program

that has been very fruitful over the last 300 years. I think we are now finally in a position

to actually make more explicit what that program amounts to. As you know 30 years ago I

made certain proposals in Chicago and then again 15 years ago in Buffalo. There has since

been a lot of work on what came to be called synthetic differential geometry. At least 20

people in the world have made important advances in synthetic differential geometry; indeed

several of these people are here. And there are also very encouraging developments about

the simplification of functional analysis. So I think that on the basis of these developments

we can focus on this question of making very explicit how continuum physics etc. can be
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built up mathematically from very simple ingredients.

To say that a topos can be built up from an object T will mean here that every object is

a direct limit of finite inverse limits of exponentials of T . By exponentials of T we mean T T ,

T T
2

etc. and of course the inverse limits involve equalizers of maps between finite products

of these. Such equalizers may be considered as varieties, and in particular the equalizers of

maps between finite products of T itself are intended to be infinitesimal varieties. There are

actually many interesting useful toposes which are built up in that way from an object T

which in some of several senses is infinitely small. Of course T is not just a single point;

but it may have only a single point, or more generally the set of components functor may

agree with the functor represented by 1 on T and its products and sums. One of these senses

is that it is a space whose algebra of functions is linearly finite-dimensional; of course that

presupposes that we have some linear algebra in the topos, in particular a base rig. But

actually it turns out that the base rig itself can be constructed from T .

I’m going to assume T to be a pointed object

1 0 // T

This arrow itself is a kind of contradiction expressing that an instant of time involves a point

and yet is more than a point. A crucial role is played by the internal endomorphism monoid

T T of T . Also very important is the submonoid of that consisting (in the internal sense) of

those endomorphisms which preserve the point.

I am actually going to define R to be that part. If this works we can consider

RX

as the space of the simplest kind of intensively variable quantities. We can also consider the
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R-homogeneous part of the space of functionals

HomR(RX , R)

as representing the simplest kind of extensively variable quantities over the domain X;

typically this means something like the space of distributions of compact support in X.

The basic spaces which are needed for functional analysis and theories of physical fields are

thus in some sense available in any topos with a suitable object T . It would be nice if

we could prove that R is commutative, but I don’t know how to do that from more basic

assumptions. You might ask “couldn’t T T itself be commutative?” But there is a very

general fact about cartesian closed categories: If an object T has a commutative internal

endomorphism monoid, then T itself is a subobject of 1. Intuitively, T T always includes

constants, T → T T and if constants commute, they are equal. Thus although T itself may

be very small, we must have that T T is a little bit bigger than R. The idea is that a real

quantity λ is just a temporal speed-up or retardation

1 0 // T λff

As we will see, although R is in a sense the more familiar, the bigger monoid T T and its

actions also play very important roles. Again, there is a general fact about cartesian closed

categories. For any monoid M in such a category we can consider also the category of all

internal right actions of M . There are, of course, the co-free actions (−)M , but we can also

consider the action on (−)T where T is the space of constants of M ; this functor will be right

adjoint to the fixpoint functor if T has a point. In case M = T T , this right adjoint is actually

a full inclusion. We want to think of XT as the tangent bundle of X with the evaluation

at the point of T as the bundle projection. (This idea is already described by Gabriel in

4



SGA3, for example.) The fullness is in contrast with the situation obtained, if we consider

that the tangent bundles are equipped only with the R-action, in which case maps between

them are essentially contact transformations, not necessarily induced by differentiating (i.e.

exponentiating) maps between the configuration spaces. The space can be recovered from

its tangent space as the zero section, but even the maps between the spaces can be recovered

if we take into account the action of this slightly larger monoid T T .

As we know, there are many examples of such categories: algebraic geometry, smooth

geometry, analytic geometry (real or complex), and many variations on those; actually, in

my Chicago lectures I pointed out that there are many potentially interesting intermediate

examples of such toposes, for example obtained by adjoining the single operation

exp

(
− 1

(−)

)

to the ordinary theory of real polynomials, so that we can obtain the typical partitions of

unity of smooth geometry and yet work in a concrete “algebraic extension” context. (But

these are algebraic extensions of systems of quantities of various arieties, so appropriately

modeled as a category, rather than just as a differential ring.) All these examples have

something in common, and part of the program was to figure out what that “something”

is, while at the same time providing a language powerful enough to make all significant

distinctions between them. Part of what they have in common is that they are all defined

over a simple base topos, the classifying topos for a pointed instant T acted on by a pointed

monoid M and satisfying some rather remarkable special axioms. In this base topos M

probably is T T since there is nothing else between, although without additional hypotheses

that isomorphism will not persist into arbitrary toposes defined over this base. In the

standard examples, exponentiation by T (the tangent bundle concept) is actually preserved

up to isomorphism by the inverse of the classifying morphism although this is not a general
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topos-theoretic fact. Those examples differ mainly in the higher types, that is, in the precise

determination of the maps whose domain is the finite-dimensional space T T . Anyway, since

R is a basic definable sub-object of M , we see why the usual examples are infinitesimally

generated in the sense of this lecture; smoothness of morphisms between infinite-dimensional

spaces has been successfully tested via smooth maps from finite-dimensional varieties for 300

years. In the standard examples the functor to this infinitesimal base topos has additional

adjoints so that the latter is actually even an essential sub-topos; this implies that there is

a comonad on the big topos which deserves the name of infinitesimal skeleton.

In all the standard examples the object T is isomorphic to the spectrum of the algebra

of dual numbers. This implies some rather remarkable axioms that the pair M,T may be

required to satisfy. For example, T has a fixed point operator

T T −→ T

assigning to each endomap a fixed point of it; in this case this operator is nothing but the

bundle projection (evaluation at zero) and can be interpreted as a map with domain M .

This is a consequence of a more general remarkable axiom, namely if β is in M and if λ is

in the zero-preserving part R of M , then

βλβ = β2λ

Of course, this striking commutation relation is interpreted as a commutative square whose

domain is M ×R in our infinitesimal base topos.

The speedups/retardations λ of the temporal instant 1 0 // T should actually form a

rig R. The multiplication is just composition of speedups, but the addition is also intrinsic,

somewhat as in Mac Lane’s 1950 analysis of linear categories. More precisely, the requirement
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is that the extensive-quantity functor

HomR(RX , R)

is additive in the sense that it takes finite coproducts of spaces X to cartesian products, the

needed projections coming ultimately from the point 0 of T . Of course, it suffices to assume

this for the case X = 2. It is the expectation, that in the smooth world R-homogeneous

maps are automatically linear, that underlies this axiom.

Many people have thought about related questions. For example, Peter Freyd had many

unpublished ideas, and David Yetter’s thesis develops some of our suggestions quite far. The

part of R consisting of elements of square zero may be called D as has become customary

in synthetic differential geometry. An isomorphism between T and D should amount to the

same thing as a choice of a unit of time.

There is another striking property which seems to be frequently correlated with being

very small. In order to settle once and for all the various terminological differences, perhaps

we can use

a.t.o.m.

as an abbreviation for “amazingly tiny object model”. Whatever we call it, the property is

that of the exceptional existence of an additional right adjoint. Since I first wrote about this

in 1980, it occurred to me that a suggestive name for this adjoint is fractional exponentiation.

Briefly, certain very special objects T may be not only exponentiable, but also fractionally

so in the sense that there is an adjointness where the new functor is denoted as the fractional
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exponent 1/T .

X −→ Y
1
T

XT −→ Y

Of course, (−)T itself is defined by another adjointness (lambda conversion)

W −→ XT

T ×W −→ X

More generally, if A is any object (not necessarily an a.t.o.m. ) which is exponentiable,

then we even have fractional exponents A
T

. These fraction symbols compose as right adjoint

right operators. When the denominators are trivial, this composition is just represented

by cartesian product of the numerators. When the denominators are general a.t.o.m.’s the

composition is not commutative, but nonetheless can be reduced to the simple fractional

form. That is, it follows from the assumed adjointnesses that (right actions)

(
1

T

)
B =

BT

T

These fractional exponents will play a crucial role in what follows.

2 Galilean ‘monoids’ for 2nd order ODE’s in toposes

Nowadays many mathematicians study abstract objects that are called dynamical systems.

Dynamical systems conceptually are intended as what one might call an analysis of Becoming.

Already with Aristotle it became customary to analyze Becoming into two aspects, Time

and States, with the Time somehow acting on the States. There are many variants on this
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model, but it is the one we still have. The action of Time on the States is the particular law

of motion. More precisely, a given model of Time (a discrete monoid, a continuous group,

etc. etc.) serves as an Abstract General which is accompanied by the Concrete General

which is the category of all dynamical systems, i.e. systems of states, acted on by that

model of Time.

But in a sense much of the current work on dynamical systems is within a framework

that still hasn’t caught up with Galileo. Galileo made a big advance on the basic idea. In his

book “Dialogues concerning two new sciences” written toward the end of his life, Galileo put

forward the dynamical refinement of the Time/States analysis which involves the following

features.

1. States are states of Becoming. This again admits many variants: the States may involve

velocities, or memories, or destinies, but in any case they themselves should be more

structured than just points which abstract static Being particularized as configurations.

[In Birkhoff’s 1919 Palermo paper which gave rise to the theory of fiber bundles, states

are fibered over configurations.]

2. The particular law of actual motion is accompanied by another law which is not the

actual law, but which “would be if there were no forces”, as Newton put it. This

accompanying law is called inertial or geodesic or spray. The latter merely means

that the law is homogenous with respect to the monoid R of time-speedups. Thus the

Abstract General itself is more detailed and refined than just a group. (It is of course

not excluded that the actual law may be itself homogenous in some particular cases,

but the accompanying inertial law always is, it seems.) Although the notion of affine

connection is given a much more complicated explanation in most text books, in fact

it just expresses this homogeneity idea: if we speed up by a factor λ, then move ahead

inertially in time for duration t, we arrive at the same state as if we had proceeded
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without speedup for a duration λt and then sped up.

3. Typically, all the laws constitute an infinite-dimensional affine space which is not a

vector space, but the specification of the inertial law provides an origin in this space.

Thus we can define the specific force to be the difference between an actual law and

the inertial law, and the forces can be added vectorially.

There could be no science or technology without something like feature 3. The actual

motion of a piece of chalk thrown into the air is influenced by Jupiter’s third moon and any

number of other things. But the most important thing is gravity, or the most important thing

is wind resistance, or wind resistance and gravity, etc., i.e. we can make an understandable

theory of a law of motion which depends only on a few forces, and to the extent that

other forces really are negligible that theory will lead to workable technological design. It

is the specification of the inertial law as a zero in the affine space of all laws which permits

the vectorial addition of individual simplified laws (or rather of their corresponding specific

forces). For example, a viable law s of Becoming might be (without mentioning forces

explicitly) an alternating sum

s = s1 − s0 + s2

(so that the coefficients add up to 1 as required for an affine combination), wherein the inertial

law s0 is homogeneous with respect to all of R, whereas the others (without themselves

being linear in the usual sense), might enjoy some restricted homogeneities. For example,

s1 might be a purely reactive law homogeneous with respect to those lambdas in R which

are involutions, while s2 might be a purely dissipative law homogeneous for the lambdas in

R which are idempotent; the first is often expressed by saying that a purely reactive force

(no friction present) enjoys reversibility in time, while the second expresses roughly that

pure friction or viscosity is inoperative when the velocity happens to be zero. Each of these
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three laws s1, s0, or s2 could be considered as a simple model in its own right, but the

alternating sum will often be more accurate. Expressed in terms of the specific force laws

this combination is

si − s0 = fi i = 1, 2

f1 + f2 = f

s− s0 = f

What, more precisely, do we mean by a ‘law’? and how could the laws possibly form

a topos as promised in my title? First, note that the usual ‘dynamical systems’ involving

for example the smooth actions of a monoid, if properly construed, will surely form a topos

with all the virtues that that entails such as internal logic, good exactness, function space

of ‘dynamical systems’, etc. Likewise, the infinitesimal version of such systems i.e. vector

fields or first-order ODE’s, will also form a topos as I pointed out in my Chicago lecture.

But what about actual dynamical systems in the spirit of Galileo, for example, second-order

ODE’s? [Of course, the symplectic or Hamiltonian systems that are also much studied do

address this question of states of Becoming versus locations of Being, but in a special way

which it may not be possible to construe as a topos; in any case, most systems arising in

engineering are not conservative.]

To specify an Abstract General whose corresponding Concrete General will consist of

state spaces, each equipped with its own genuinely dynamical law, I propose the following.

Consider any given map

T −→ A

in a topos of spaces, subject only to the restriction that its domain should be an a.t.o.m.

(the codomain A need not be an a.t.o.m., although it often will be). If I have any space X
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I can consider the restriction

XT ←− XA

along the map induced by my given map on the map spaces. The kind of structure that I

want to consider is that of a given section s to this restriction map

XT
s

// XA

This section will serve as a law of Becoming in the sense that given a map from T to X,

considered as a state of instantaneous Becoming, the law will provide a definite extension to

A considered as a distinctly longer instant.

T

x
  

// A

s(x)

��
X

The standard example has T as a first-order infinitesimal instant and A as a second-order

instant. In that case the choice of a unit of time would identify A with the part D2 of R

consisting of elements of cube zero in T T . An actual motion following a law s would be a

map (in the dynamical topos) whose domain is a relatively small object idealizing the state

space of a clock, i.e. an interval of time equipped with its own (often homogeneous) law

which the map must preserve.

Theorem. For any given map T → A in a topos with natural number object, where T is

an a.t.o.m., the category of all pairs X, s as above, with the obvious motion of morphism,

is a topos lex-comonadic over the given topos. In fact, the resulting ‘surjective’ geometric

morphism is essential.
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Proof. By the basic adjointness such a section is equivalent to a map

X −→ X
A
T

which, when ‘evaluated at’ the given T → A reduces to the identity on X. The co-pointed

endofunctor (pullback of the fractional exponentiation) has a left adjoint. Therefore, iterating

it and passing to the sequential limit yields a lex-comonad which even has a left adjoint

monad. Since the comonad is left exact, the coalgebra/algebras for this pair constitute a

new topos, but they are equivalent to the laws of motion s under discussion. The essentiality

is thus a special case of the Eilenberg-Moore theorem about adjoint monads.

Thus we see that there is a Galilean generalization of the notion of monoid. Recall that

any monoid in a ‘cartesian’ closed category is equivalent to a pair consisting of an adjoint

monad with its right adjoint comonad. But the converse of that statement is true only if the

adjointnesses are internal. In our case the right adjointness of the comonad is defined only

over some lower topos (as was discussed in my 1981 Cambridge lecture and investigated in

Yetter’s thesis). This is, however, still a very special kind of lex comonad since it is generated

by this fractional exponent.

To sum up, the actions of such a Galilean ‘monoid’ thus constitute a topos of laws

of motion in the Galilean dynamical sense. For example, if A consists of second-order

infinitesimals, all the usual smooth dynamical systems, including the infinite-dimensional

ones, (elasticity, fluid mechanics, and Maxwellian electro-dynamics) are included as special

objects.
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3 Infinitesimal bodies too?

Galileo’s second new science, as interpreted by Noll, concerns the particularity of the ways

in which constitutive relations of actual materials give rise to laws of motion s on the

configuration space X of a body, when the body is subjected to arbitrary external conditions.

While there was no time at the AMS lecture to elaborate on that, I did discuss it in my 1992

lecture in the engineering faculty at Pisa and in my talk at the 1993 Nollfest. In addition

to providing a flexible general conceptual setting for considerations of materials science, the

methods involving infinitesimal objects in toposes seem to also offer a definite particular

model for the kind of surfaces studied by the Cosserat brothers and for the pseudorigid or

zero-dimensional bodies studied by Muncaster and Cohen.

[Transcript from Video revised by Bill Lawvere.]
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MONTREAL MEETING SPECIAL SESSION AMS

Friday, September 26th, 1997

8:45 Andre’ Joyal The theory of h-categories

9:40 Marta Bunge Functions vs Distributions Grothendieck toposes

2:30 Pierre Cartier Computation and visualization, a new

philosophy of categories

3:25 Phil Mulry Remarks on Categorical fixed points

4:05 Jim Otto From NNO to Complexity

4:45 Bob Paré On the Cardinality of Functors

Saturday, September 27th, 1997

8:45 Bill Lawvere Toposes of Laws of Motion

10:20 Anders Kock Geometric Construction of the Levi-Civita

parallelism

2:30 Peter Gabriel Categories and Representation Theory

3:25 Alex Heller Semistabilization & infinite loop Spaces

4:05 Kimmo Rosenthal Multirelations and power quantales

4:45 Fred Linton Triples vs Theories – one last time

Sunday, September 28th, 1997

8:45 Mikhail Kapranov Dg-thickenings of classifying space

9:40 Ross Street The Petit Topos of Globular Sets

10:20 Todd Trimble Opetopes and bar constructions

2:30 Steve Schanuel Objective Number Theory

3:25 Aurelio Carboni Syntactic Characterizations of various classes of

locally Presentable cats

4:05 Jim Lambek What is the category of sets – A Tribute to Bill

Lawvere

4:45 Claudio Hermida Higher-Dimensional multicategories
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Preface

Category theory and its applications

When the idea first arose of organizing a special session on category theory at the September

26-28, 1997 AMS meeting in Montreal, it seemed immediately appropriate to dedicate it to

Bill Lawvere as a token of our esteem on his 60th Birthday. Certainly, few people have

influenced category theory, as well as its applications to logic and other mathematical

sciences, to the extent that Bill has. Even a brief mention of some of the areas of his

most decisive contributions covers many of the highlights of category theory since his thesis

at Columbia in 1963. Algebraic theories, axioms for the category of categories, axioms for

the category of sets, elementary topos theory, synthetic differential geometry, continuum

mechanics, mathematical education, history and philosophy of mathematics. Thus, the

editors were pleased to wish him well on this birthday, and thank him for many stimulating

years of mathematics and friendship. We eagerly await his future insights.

Michael Barr
Department of Mathematics, McGill University, Montreal,

QC, Canada H3A 2K6

Ieke Moerdijk
Mathematics Institute, University of Utrecht, 3508

TA Utrecht, Netherlands

Myles Tierney
Mathematics Department, Rutgers University

Piscataway, NJ 08854, USA

——————————————————————————————————

Category Theory and its applications AMS

(Lawvere Festschrift) Volume 154 Issues 1 – 3, pages 1 – 318
(1 December 2000)



Many Thanks from the Family:

Fatima, Danilo, and Silvana Lawvere participated in the original Lawvere Fest for Bill’s 60

th Birthday, and were involved in the taping and transcribing of the talk. While Danilo was

videotaping, he accidentally leaned on the light switch turning it off for a second during a

particularly gripping moment of the talk. Every member of the audience (a large part of the

CT community) turned at once to look, which remains an unforgettable mental picture of

everybody’s faces in our minds. We cherish and chuckle at this memory.

Bill was deeply grateful and encouraged by the outpouring of work and ideas in the Special

Session. He was very happy at the presence and participation of so many of his friends and

colleagues from his long career, as well as of the younger participants. He was very surprised,

and honored when he saw the articles dedicated to him in the Festschrift; and the summary

of Bill’s contributions which is a generous and warm tribute.

———————————————————————————————————–

The Lawvere family continues to be grateful for the hard work and collaborative spirit of the

Category Theory community, which has yielded so many other conferences and research.

Our heartfelt gratitude goes to the Organizers and editors Michael Barr, Ieke Moerdijk and

Myles Tierney, for the Festschrift; we also thank the many contributors to the Festschrift.

We are very grateful to Matias Menni and Francisco Marmolejo for their efforts in bringing

Lawvere’s 1997 talk posthumously to publication.
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