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Abstract. A significant fraction of dialectical philosophy can be modeled mathematically through 
the use of "cylinders" (diagrams of shape A1) in a category, wherein the two identical subobjects 
(united by the third map in the diagram) are "opposite". In a bicategory, oppositeness can be 
very effectively characterized in terms of adjointness, but even in an ordinary category it may 
sometimes be given a useful definition. For example, an effective basis for teaching calculus is a 
ringed category satisfying the Hadamard-Marx property. The description in engineering mechanics 
of continuous bodies that can undergo cracking is clarified by an example involving lattices, raising 
a new questions about the foundations of topology. 
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In early 1985, while I was studying the foundations of homotopy theory, it 
occurred to me that the explicit use of  a certain simple categorical structure 
might serve as a link between mathematics and philosophy. The dialectical phi- 
losophy, developed 150 years ago by Hegel, Schleiermacher, Grassmann, Marx, 
and others, may provide significant insights to guide the learning and develop- 
ment of mathematics, while categorical precision may dispel some of  the mystery 
in that philosophy. In any case, the structures described in the definition below 
occur frequently enough in mathematics to suggest their systematic study. 

A Unity and Identity (UI) of two maps with a common codomain C is a third map 
with domain C which composes with both to give isomorphisms. The existence 
of  such a third map obviously implies that the two maps are subobject-inclusions, 
that these two inclusions have isomorphic domains, and that C is retracted onto 
both of  these subobjects, but moreover that there is a common retraction in the 
following sense: any UI in any category is canonically isomorphic to one in 
which both composite isomorphisms are actually the identity map. In this view, 
a UI is just a map equipped with two sections, or equivalently, is a common 
retraction for two subobjects whose underlying objects are identical. Such a 
diagram with two objects and three maps is of shape zXI, where A1 is the 
category of  order-preserving maps between totally-ordered sets of  one and two 
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elements, respectively; up to splitting idempotents, the diagram is determined 
by a left action of the three-element monoid generated by two elements e0, el 
satisfying the four equations eiej = ei. The existence of a common retraction 
implies a striking property not shared by most pairs of subobject inclusions with 
a common domain: the intersection of the subobjects is given by the equalizer of 
the inclusions! In such a UI diagram, i.e. B ~ C -+ B with both composites the 
identity, we may unambiguously refer to B as the smaller and C as the larger of 
the two objects. Besides the names UI or Al-diagram, a third name for such a 
structure is "cylinder". This name is suggested by the special class of examples 
constructed by starting with any bi-pointed object 1 ~ I (where 1 is terminal), 
then taking the cartesian product with any "base" object B to obtain "left and 
right end" inclusions 

B I C = I × B  

which are united by the projection map. Thus any cylinder "unites" in one object 
C the left and right which are (although at "opposite" ends) "in themselves 
identical" (with B !). Even the generalized cylinders have an additional structure 
consisting of the uniting map's fibers, which may be pictured as threads running 
between the left and the right ends. But these threads are in general not neces- 
sarily isomorphic with each-other, although in the special examples they are all 
isomorphic with the original bi-pointed object I. 

In a 2-category, two parallel maps may be called adjointly opposite (AO) 
if there is a single third map which is right adjoint to one of the given pair 
and left adjoint to the other. (Here "opposite" does not necessarily imply non- 
isomorphic; for example, a Frobenius homomorphism of rings induces a forgetful 
functor between categories of modules whose left adjoint is isomorphic to its right 
adjoint.) In case the third map is also a UI for the adjointly opposites, then the 
AO are of course both full inclusions. Such a map, having both left and right 
adjoints which are moreover full inclusions, is a UIAO (unity and identity of 
adjointly opposites), also known as an "essential localization". 

In any UIAO there is a canonical 2-map between the opposites. A composite 
B +-- C +-- E of two UIAO's is again a UIAO; in such a composite we may 
consider that B is qualitatively smaller than C relative to E provided the left 
adjoint B --+ C inverts the canonical 2-map between the two larger opposites 
C ~ E .  For example, the category B of sets is qualitatively smaller than the 
category C of directed graphs relative to the category E of simplicial sets; in 
this example, discrete/codiscrete are AO as are 1-skeletal/1-coskeletal, the UI's 
strip away the higher-dimensional simplicies from a simplicial set or graph, and 
the "qualitatively smaller" judgement is justified because discrete simplicial sets 
are all (not only 1-skeletal, but also) 1-coskeletal. 

Whenever we have a composite UIAO B +-- C +-- E in which B is qualita- 
tively smaller than C' relative to E, if we consider all endomaps of E which are 
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obtained by composing all opposites and uniters in all possible ways, we obtain 
a representation of a 6-element monoid which satisfies the identity f 9 f  = fg.  

Even in categories which are not 2-categories, it is sometimes nonetheless 
possible to give a useful meaning to the idea that the two subobjects united 
by a UI are "opposite". For example, a homotopy theory on a category might 
be specified by giving a class of idempotents to be considered as "deformation 
retracts"; a homotopy invariant is any functor which maps these distinguished 
idempotents to identities. A distinguished class of cylinders can be defined to 
consist of all UI's in which the two idempotents e0, el obtained by composing 
are distinguished idempotents; a given pair of maps B ~ Y can be called 
"homotopic" if there exists a distinguished cylinder 

B lC  

with base B and a map h: G' --+ Y which, when composed with B :::t G' 
yields the given B ~ Y. Every homotopy invariant is a functor which identifies 
homotopic maps. The converse will hold if the following axiom on the class of 
distinguished idempotents holds: for each distinguished idempotent G' _5+ G' there 
exists a distinguished cylinder C ~ D --+ C with base G' and a map h: D --+ C, 
showing that e is homotopic to 1 c • However, there are many examples in which 
only a weaker version of this axiom holds, as pointed out by Quillen. In the 
resulting theory the idea that two subobjects B ~ C be "opposite", becomes 
the condition that taken jointly they form a "cofibration" B + B ~ C, which 
in many examples simply means that the two subobjects are disjoint. In a topos 
the classifying map h: G' --+ f~ of one of two such opposites will map the other 
to false; if the opposites are moreover part of a distinguished cylinder, then as 
pointed out by Grothendieck, tmeB and falseB are homotopic maps B ~ f~. 

A favorite example in dialectical philosophy is the unity of the liquid and 
gaseous states which are both possible (for a given substance at a subcritical 
ambient pressure p) over a certain identical range of temperatures. That this 
exemplifies our mathematical definition may be seen as follows. According to 
van der Waals (1881), 

expresses temperature (in energy units) as a function of volume and pressure, 
where a, b, N are constants describing the attraction between molecules, the 
volume of the molecules themselves, and the number of molecules. There are 
three values of V for which dT /dV  = 0, and with each such V there is a unique 
other V* for which T(V*) = T(V).  Let VI < V0 be the two positive such V; 
then V0* < Vl* so we can consider the closed interval G' = [V0* , VI* ] and the 
corresponding interval B = [To, Tl] where Tk = T(Vk) = T(V~). Considering 
van der Waals' formula above as a map T: G' ~ B, we see that it is a UI 
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for the liquid and gaseous maps VL < Vc which give volume as a function of 
temperature in each of the two phases: 

T O VL = I B = T o VG. 

In the above van der Waals example there is clearly also a third section of 
T in addition to the two opposites; this third section agrees with VL at Tl, but 
agrees with VG at To. Traversing this middle section of the S-shaped state space 
transforms some of the kinetic energy corresponding to the higher temperature 
Tl > To into potential energy of separation corresponding to the higher volume 
V0 > 111, thus doing p(Vo - Vl) of work. [For any thermodynamic substance in 
which the relation between pressure and temperature is affine-linear, the internal 
energy is a sum of two parts, a "kinetic" energy which depends on temperature 
only and a "potential" energy which depends on volume only, as can be proved by 
differentiating the free energy function. The amount of heat consumed by such a 
process is not determined by the van der Waals equation alone, because the kinetic 
energy function of a substance is an independent datum. By contrast, the potential 
energy function is - a / V  for all van der Waals substances.] It is not necessary 
to consider only isobaric processes: if we construe the endpoints as functions 
of p over a suitable range of pressures, the "volume interval" C becomes an 
S-shaped surface uniting liquid and gaseous copies of the "temperature interval" 
B as subsurfaces. 

There seem to be many other situations in which a more or less canonical third 
section exists, mediating between two united identical "opposites". For example, 
in an essential localization (=UIAO) in Cat, if the larger of the two categories 
has image-factorisations, then taking the image of the canonical 2-map between 
the opposite inclusions defines often such a third inclusion functor of the smaller 
category into the larger. 

II 

Near the end of his life, Karl Marx wrote about the foundations Of differen- 
tial calculus. The essence of his line of thought, later rigorously established by 
Hadamard, yields an effective and simple basis for learning and developing the 
subject if made explicit. The problem may be stated as follows: Presupposing 
those laws of algebra which are equally valid for variable and constant quantities, 
what is additionally required in order to determine the derivatives of genuinely 
variable quantities and to establish the laws of the derivative? The answer is the 
unity and identity of opposites permitting a single variable to be split into two 
like variables and later collapsed again to one. How can we make this conclusion 
into precise mathematics? 

The category of commutative rings may be taken to be a fair embodiment 
of the algebra of variable and constant quantities, so we consider a unity and 
identity of "opposites" in this category, that is, three homomorphisms, one of 
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which is a retraction for both of the other two. An important kind of example 
is 

(i) 
Q 

c (M) 

where M --+ N is a given morphism of smooth manifolds (for example N = 1 ). 
That is, we think of the smaller ring as the one to be studied and the bigger ring 
as consisting of the even-more-variable quantities resulting from allowing each 
quantity y to become a pair of quantities Y0, Yl. The single uniting homomorphism 
downward is the one which sets the variables again equal, i.e. restriction to the 
diagonal, whereas the two united homomorphisms upward indicate the two trivial 
ways of getting a function of two variables from a function of one variable, by 
composing with the respective projections. 

Given y in the smaller ring, let Y0, Yl denote the two resulting quantities in the 
bigger ring, while if the downward homomorphism takes q in the bigger ring to 
b in the smaller, we can write q --+ b. For any y in the smaller ring Ay =: Yl - Y0 
is in the bigger ring, and Ay  --+ 0 because of the two basic retraction equations. 
The "oppositeness" we need to follow Marx and Hadamard follows from the 
existence of genuine variables in the sense of the 

DEFINITION. Relative to a given diagram of shape A l in the category of rings, 
an element x of the smaller ring is called variable if for every q in the bigger 
ring 

q A x  = 0 :. q ) O. 

DEFINITION. A(x)  is the set of all y in the smaller ring for which there exists 
at least one 9 in the larger ring with Ay _-- 9 A x  in the bigger ring. For any such 
y, dy /dx  denotes the quantity in the smaller ring such that for all 9 

dy 
Ay = g .  Ax > g dx" 

PROPOSITION. I f  x is variable, then A(x)  is a ring, d /dx  is well defined on 
A(x),  and 

d(uv) dv du 

dz - Uz + Uz 
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for any u, v in A(x). 

Proof Let Au  = 9Ax, Av = h A x  in the big ring. Then 

A(uv) = uoAv + (Au)vl = (uoh + gvl)Ax.  

But 

dv du 
uoh + gv, ) U-~x + ~x V. 

PROPOSITION. If yeA(x) and if y is also a variable, then A(y) C_ A(x) and 

dz dz dy 

dx dy dx 

for all zeA(y). 

Proof If Az = gAy, Ay  = h A x  then Az  = (g . h)Ax,  but g --+ dz/dy and 
h --+ dy/dx, and the passage is a ring homomorphism. 

Thus we have established the basic laws of one-variable calculus. A basic exam- 
ple is y = x 3, for then Ay = g. Ax with 9 = x~+xoxl  + x  2 in any "cylinder in 
rings", since the two united maps are homomorphisms. But the concept is in no 
way limited to polynomial functions. There are many categories with products 
containing a ring object R such that the UI 

(R2, R) ~ (R ,R)  

satisfies the two axioms: the identity map x is variable and all maps R -~ R are 
in A(x). This is a reasonable basis for teaching, since it codifies the basic idea: 
the suitable categories are those in which the secant-slope function always exists 
and specializes unambiguously to a tangent-slope function. 

III 

Clearly, the above discussion does not require that the bigger ring consist of 
functions defined on the full cartesian square of the spectrum of the smaller 
ring; a suitable neighbourhood of the diagonal would do. Indeed we could even 
restrict to an infinitesimal neighbourhood of the diagonal by reducing the larger 
ring modulo the square of the kernel of the original UI. But there are other 
examples of a rather different, more particular, character. 

When particular laws of "becoming" are taken to be described by vector 
fields, the zero vector field plays the role of a reference "non-becoming" relative 
to which "change" (A) can be defined. This remark is the basis of  a class of 
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examples of the calculus described in the previous section, but descriptive of 
particular dynamical systems. If a vector field on a manifold is regarded as a 
derivation ~ of the ring of smooth functions on the manifold, then by considering 
as unifier the ring of dual numbers f+g.e, e 2 = 0 over that ring, we obtain a unity 
and identity of "opposites" in rings with e ~-~ 0, f0 =:  f+O.e, fl =: f+~(f).e. 
Thus A f  = ~ ( f ) .  e so a function x is variable in our sense relative to ~ iff ~(x) 
is a non-zero divisor. If for simplicity we assume ((x)  is invertible, then 

dy ~(y) 

dx ~(x) 

is the concept of "derivative along ( with respect to x" which results from our 
general definition. Note that in this example qAx = 0 for many q = f + 9 " e, 
but all satisfy q ~ 0 as required if x is variable. 

IV 

Walter Noll recently proposed a generalization of the usual concept of continuous 
body, designed to describe motions during which the body can undergo cracking 
and self-contact. The usual concept is that of a single topological space which at 
each time is embedded in geometrical space; however, if during motion a body 
undergoes cracking, neither the point set nor the open-set frame of the body 
remains the same. Noll's proposal is that all these various topological spaces 
for various times nonetheless have something in common as a result of being 
the "same" body, namely the Boolean algebra B of "parts" of the body. At any 
given time t the body is placed in ordinary space by a locale map from B whose 
spatial image has a locale L/t of open sets; the requirement is that the algebra of 
regular open sets within/,/t is isomorphic to B for all t. The condition that the 
body be "continous" is independent of the placement and even of the momentary 
locale/4t, since it just means that B (as a locale in itself) has no points. Since 
metric spaces are regular, the locale/'/t of opens at time t is a sublocale of 2 B'~, 
suggesting that the "states" of the body involve variable Grothendieck topologies 
on the lex poset B. In any case, this new connection between lattice theory and 
engineering mechanics deserves to be further investigated. Here I will describe 
a connection with UIAO's. 

The dialectical principle which says that each part is itself "and" its relation- 
ships, may be realized through the canonical isomorphism between the regular 
open sets and the regular closed sets (of the space occupied by the body at a 
given time). Indeed, the typical relationships of continuum mechanics are the 
contact forces which live on the intersections of boundaries of parts, whereas 
the mass of the body is carried on the opens. This double role of the parts can 
be made explicit by defining (at each time t) 

St = {S I clo(S) = cloint(S) and int(S) = intclo(S))  
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where int and clo denote interior and closure, with respect to the topology L/t, of 
the subsets S of the points 

Xt = Frame hom(L/t, 2) C_ Lex(B, 9.). 

Then each S in St is associated with a unique subbody BeB; this map St ~ B 
is a UIAO with left adjoint as the regular open realization and with right adjoint 
as the regular closed realization. In more detail, if we start with the usual idea 
that there are two Boolean subposets Bo, Bc of St, then "closure of the interior 
of" is a retraction onto Bc which induces a canonical isomorphism from 13o to 
Bc; thus, we should mathematically consider that there is but one /3 in itself, 
but of course two distinct inclusions into St. As some other UIAO's deserve 
the traditional names "being vs. non-being", "becoming vs. non-becoming", etc., 
this example might deserve to be called "interacting vs. non-interacting"; in case 
the body is momentarily connected, the only B which are "both" (in the specific 
sense that the two inclusion maps actually give equal results) are B = 0, 1. 

Now, with any UIAO we can associate, to each object B of the smaller 
category, the interval category of all objects S in the bigger category for which 
S ~ B; in our example, this is isomorphic to the Boolean algebra of all subsets 
of the momentary boundary of B; the topology of this boundary, i.e. which of 
these subsets are closed, is determined by the whole UIAO since the regular 
closed subsets of the boundary of B correspond to such S which are moreover 
of the form int (B) t_Jclo(C') for some C' in B. It may be of interest to investigate 
how a UIAO S over B induces a Grothendieck topology on B in such a way as 
to yield, as sheaves in our example, the regular locale H. 
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