Adjoints in and among Bicategories

F. William Lawvere

Abstract

Professor Roberto Magari is remembered for the depth and clarity
of his lectures which impressed students and colleagues alike. Indeed
he championed the deepening of logic through algebraic models and the
clarification of algebra through explicit recognition of logic. In that
spirit, I here model the basic construction of proof theory as the left
bi-adjoint to the inclusion of Posets into Categories. That simple de-
scription has a rich history, some of which I here recall. Its specific
content stems from the analysis, within such bicategories, of quantifiers
and implications as cases of Kan’s notion of adjoint. The construc-
tion leads to some open algebraic problems concerning known classes
of locally-cartesian-closed categories and their role as models for proof
theory.

1 Some Basic Concepts Concerning Bicategories

A bicategory is (apart from technical considerations concerning the precise
sense in which composition is associative) a category enriched in Categories;
that is, between any two objects there is (not just a class, but) a category
of morphisms (whose objects are called 1-morphisms and whose morphisms
are called 2-morphisms of the bicategory) and composition is a functor on the
cartesian product category (for each triple of objects, or “O-morphisms”, of
the bicategory). Combinatorially, if we consider an ordinary category to be
a multiplicative graph, where a graph is a conglomerate of 1-balls (arrows)
with boundary 0-spheres given as the union of two points, then analogously, a
bicategory is a bimultiplicative bigraph, where a bigraph is a conglomerate of
2-balls (“lozenges”) with boundary 1-sphere given as the union of two 1-balls
intersecting in their boundaries; the “vertical” multiplication of 2-morphisms
is that within each hom-category, whereas their “horizontal” multiplication
is the functorial composition of the bicategory. Just as category theory can
explicitly encapsulate much more mathematics than pure set theory, while yet
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remaining universal, so bicategories contain qualitatively more information
than pure categories. On the other hand, the notion of tricategory (and even
oco-category), which has proven useful in homotopy theory, has the striking
feature that even there the concept of bicategory is central, since it is the
structure relating any two levels. Explicitly, the functorality of composition
implies the law
(ab) o (zy) = (aoz)(boy)

involving three 0-morphisms, six 1-morphisms, and four 2-morphisms a, b, z,y
which are composable, where juxtaposition denotes vertical composition and
circle denotes the horizontal composition. The “bifunctors”, which are the
“morphisms” between bicategories, are of course required to preserve the bi-
graph structure as well as the two compositions (but again there is considerable
content in the precise sense to which the composition of 1-morphisms is pre-
served, since it may be true only “up to an invertible 2-morphism”).

2 Cat and Adjointness

A basic concrete example is Cat, where categories, functors, and natural trans-
formations are the 0-morphisms, 1-morphisms, and 2-morphisms respectively.
Indeed, as Yoneda's lemma permits analysis of ordinary categories in terms
of Set-valued functors, so Yoneda’s bilemma permits analysis of general bicat-
egories in terms of Cat-valued bifunctors. That applies in particular to the
notion of adjointness. It seems that a bicategory is precisely the most gen-
eral environment in which the notion of adjointness can be defined, by any of
the following three equivalent conditions on a pair of 0-morphisms, a pair of
1-morphisms, and a pair of 2-morphisms in the configuration

UoF | <L 4 B < | FoU

in which the two “lozenges” 7 and ¢ are squashed because half the boundary of
7 is reduced to the point 14 and the other half of the boundary of ¢ is reduced
to the point 15. One condition is just that the two equations

(o F)(Fon) = 1p
(moU)(Uoe) = 1y
hold in the bicategory itself; these imply that, among the 2-morphisms (con-

structible from the data) between the iterated loops at A or B, all the “simpli-
cial” identities (familiar from composition of order-preserving maps between

F
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finite totally-ordered sets) hold. This can be Yoneda-tested as follows: for any
T in the bicategory, the induced functors

F
Hom(T, A) Hom(T, B)
U

between actual categories should be adjoint, with adjunction unit and counit
induced by n and e. That in turn has meant for over 35 years that for each pair
A, B of 1-morphisms 7 — A, T — B, 7 and € induce natural bijections
FoA— B
A— UoB

between the indicated sets of 2-morphisms. The third equivalent condition is
that for each V in the bicategory, there is a similarly induced pair

U*
Hom(A,V) Hom(B,V)
F*

of adjoint ordinary functors.

It is the first, equational, condition which makes it obvious that all bi-
functors preserve adjointness. That is a far-reaching generalization of the fact
that ordinary functors preserve isomorphism, just as the theorem that adjoint
1-morphisms uniquely determine each other is a far-reaching generalization of
the fact that in an ordinary category inverse isomorphisms uniquely determine
each other. Here the sense of uniqueness for 1-morphisms appropriate in a bi-
category is “up to an invertible 2-morphism”. The explicit sense in which the
two mentioned results are generalizations stems from the construction, for each
ordinary category, of the bicategory which extends it by taking 2-morphisms
to be just equalities between the given 1-morphisms.

3 Posets and Quantifiers

A key bicategory for predicate logic is the one in which 0-morphisms are posets,
1-morphisms are order-preserving maps, and wherein there is a 2-morphism
from f to g if and only if fz < gz in the (common) codomain for all z in
the (common) domain. This bicategory is seemingly somewhat “trivial” in
that any two 2-morphisms with the same domain f and the same codomain g
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are themselves equal. Nonetheless, there are many non-trivial adjoints in it,
such as the upper and lower integrals of the Darboux-McShane theory, as well
as the semantic correspondents of the rules of inference usually considered in
predicate logic. Indeed, these examples are of a special nature made possible
by the function-space adjoint which acts on this bicategory of posets to give
it its cartesian closed character. Explicitly, if T is any complete poset and
f : A — B is any order-preserving map, then there is an induced order-
preserving map T/ which substitutes f into the various “predicates” in T2
yielding new predicates in 74. This T/ has both a left adjoint and a right
adjoint, which is the meaning of existential and universal quantification.

Often the term “quantifier” is restricted to the case of the adjoints in-
duced by some special f’s, as in first-order single-sorted predicate logic where
A=XW B =XV, f=X° for maps 0 : V — W between finite sets of
“variables”; even here the surjective (but not injective) o’s (so the injective
f’s) incorporate in their induced adjoints the rules of inference for equality
predicates, whereas it is the injective (but not surjective) o’s (so the surjective
f’s) which induce the quantifiers which make a genuine existential or universal
leap. However, most of the work on algebraic logic in the past twenty-five
years has followed the more liberal interpretation according to which the op-
eration of forming the image of definable parts of the domain of any term f is
considered as an existential quantification, because it satisfies the appropriate
rule of inference.

These two key features of the desired semantics of first-order predicate
logic, namely the mutual determination of substitution and quantifications
via adjointness and the role of the category of finite sets as variables, should
be retained in any abstract algebraic structure which makes the universe X
generic, and even in a syntactical scheme for presenting examples of such alge-
braic structures by generators (“atomic predicates”) and relations (“axioms”).
The early attempts in the 1950’s to describe such algebraic structures in the
form of cylindric or polyadic algebras dealt instead with the infinitude of vari-
ables by using a single infinite set, rather than the category of finite sets. This
distortion of the intended content obscured the adjointness between substitu-
tion and quantification, which was left implicit and accounted for instead by
special axioms which seemed peculiar to the subject, since they were at best
vaguely analogous to conditions appearing in analysis, topology, or other parts
of algebra. This double distortion of the content, as I pointed out at the 1963
Berkeley Model Theory symposium, meant that these two particular algebraic
versions of logic were destined for relatively little application to mathematics.

Of course, the predicates XV — T (especially in case T = 2) classify cer-
tain subobjects of XV or “relations” and the ordering given by the 2-morphisms
reflects the objective inclusions between these subobjects; it is these objective
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inclusions and their transformations which are the content of “logic in the
narrow sense”, reflected subjectively as entailment relations between the for-
mulas which name the subobjects. But inclusions between subobjects of B are
established by commutative triangles

E, E,
N,

where the vertical arrows specify the insertions of the subobjects. Of course,
since insertions of subobjects are monomorphisms, there is at most one
E, — E, establishing the inclusion of any two given subobjects. On the
other hand, in topology, geometry, combinatorics, etc. there often arises the
need to compare E; — B which are not necessarily monomorphisms; this sug-
gests the need for “logic in a broader sense” in which the attributes of B form
a category which does not reduce to a poset. The text of my talk “Category-
valued Higher-order Logic”, at the 1967 Los Angeles Set Theory Symposium,
was distributed to the participants of that Symposium and discussed also in
the 1968 Versailles meeting on Automatic Demonstration (SLNM 125). Re-
vised and expanded, that material was published in three papers ([3],(4],[5])-
These three papers helped to popularize the new field of “proof theory”, which
had emerged in the work of H. Lauchli, circulated in Spring 1967 as a new com-
plete semantics for intuitionistic logic. (The emergence had been predicted by
an old remark of Curry concerning the striking analogy between modus po-
nens (for propositions and inferences) and the laws of functionality (for types
and terms); that analogy had been objectified by my observation that both
involve cartesian-closed categories ([1])). L&uchli used actual mathematical
objects (namely permutation representations), rather than the ritual equiva-
lence classes of strings of symbols, so his work was described at Versailles as
“non constructive” and not seriously looked at again until very recently. The
construction by D. Scott in 1970 of models for the untyped A-calculus, using the
remarkable properties of adjoint retractions in the cartesian-closed bicategory
of posets with filtered sups, continued to popularize the virtues of examples
constructed instead by means of inverse and direct limits from spaces; these
virtues already manifested themselves in a remarkable way in the 1966 Scott-
Solovay Boolean-valued models for set theory, which were seen to constitute
an important corner of another bicategory, that of toposes.

4 The Curry-Lauchli Adjoint

The central problem of proof theory is the unbounded nature of “there exists a
proof”. Like any existential quantification, this concerns a left adjoint, but one
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embedded in a definite context. The essential content of this Curry-Lauchli
adjoint is, I believe, independent of syntactic presentations and embodied in
the following

Proposition. The inclusion of the bicategory of posets into the bicategory of
categories has a left adjoint which is a bifunctor (hence preserves adjointness)
and which preserves finite cartesian products.

Explicitly, the poset associated to a given category has as elements the
objects of the category, and A < B iff there exists a morphism A — B. Al-
though this Curry-Lauchli adjoint has many applications, we pass immediately
to the most typical. Recall that a category C is called locally cartesian-closed
if it has pullbacks and if for each A — B in C, the pullback functor f* has a
right adjoint fII.

c/a —1 C/B
fI

Here the left adjoint fX is the functor which exists trivially for any category
and which comes about by merely composing f with each £ — A in C/A; in
case B = 1, the effect of fT is to extract the total of an object distributed over
A. The composite functor, fII following f*, is the function-space construction
which shows that each category C/B is cartesian closed.

Corollary. If C is a locally-cartesian-closed category, denote by Pc(A) the
poset reflection of C/A, for each “type” A in C. Then each Pc(A) is a Heyting
algebra, in the sense that it has conjunction and implication related by modus
ponens (as well as disjunction in case C has coproducts). For each “term”
A — B in C, f* induces a substitution which is a Heyting homomorphism and
has quantifiers

3

Po(A) ~—> Pe(B)
v

satisfying the correct rules of inference. Moreover, to give a “proof” in C/B
of (f3y) - (y) is to give an = for which fx = y together with a proof of ¢ - (z),
while to give a proof of (fVy)-(y) is to give, for each x with fr = y, a proof of
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@ (z), but the latter in a uniform manner in the sense that it is implemented
by a single map in C.

[Notation: f*p = ¢- f. for example ¢- (z) = z*¢ . so that (¢- f)-z = - (fz).
Here the z and y denote arbitrary C-morphisms from an arbitrary test object
to A and B respectively. Note that (¢f)3¢ = g3(fIp) and that if for the case
f = X° we write instead f3p = p3o, then we have p3(o7) = (p30)3r for the
iterated quantifiers.]

In case C is the category of (small) abstract sets, the above construction
recovers the usual power sets. but the situation is strikingly different for most
Grothendieck toposes, where the axiom of choice is false. For a precise compar-
ison, let Q2c(A) denote the poset of all C-subobjects of A. Then the epi-mono
image factorization yields a retraction functor C/A — Q¢(A), which by the
universal property of the poset reflection yields a retraction of posets

Pc (A) —> QC (A)

The latter is an equivalence for each A iff all epimorphisms in C split; otherwise
Pc(A) is bigger. In fact. it can be a proper class, as for example if C is the
topos of graphs, though Lauchli’'s work showed that it is small in the case
where C is the topos of permutation representations of a given group.

5 Open Problems

It seems to be still an open question to determine for which Grothendieck
toposes C the “proof-theoretic power set” Pc(A) is always a small Heyting
algebra.

There is a natural weakening of the stringent requirement

N/

for the provability of “E implies F”'. Namely, we could first analyze the hy-
pothesis by passing to a judiciously-chosen epimorphic cover E' — E (which
will have the same subobject of A as image) and then try for a direct proof of
the conclusion from the refined hypothesis:
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E'
\\\
~N
~N
E ~F
A
This turns out to be equivalent to the existence of an actual inclusion between
the image subobjects in Q¢c(A)!

In a topos the subobjects of A are internally representable by maps A — Q¢
to a fixed representing object. To achieve something like that for Pc(A), we
would have to replace Pc by its sheafification and to verify that at least that
sheaf is small. This sheafification involves a special form of the “refinement of

hypotheses” idea of the previous paragraph, namely passing first to a covering
of the universe A and then pulling back the hypothesis:

E' E

AI

A

For which Grothendieck toposes is the sheafification of the proof-theoretic
power set small, and hence internally representable?

Since directed graphs are actually diagrams of a finite shape, the combi-
natorial aspect of these open questions is underlined by the special case: for
which finite categories does the topos of presheaves have the property that the
proof-theoretic power set functor has small values?

6 The Special Role of Negation

The proof theory of negation seems at first problematic since in any cartesian-
closed category with an initial object “false”, any object of the form
(E = false) is already in the poset of subobjects of 1, seemingly obliterat-
ing any possibility of making distinctions between proofs of a negative formula.
That Lauchli nonetheless obtained a completeness result for intuitionistic pred-
icate calculus (in spite of using only Boolean toposes in his semantics ) stems
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from his understanding the negation of an object E in C/A not merely as
another object, but as the functor of F in C/1

(-E)(F) = (E = A"F)

where A is the map from A to 1. The same idea would seem relevant in con-
texts other than proof theory. For example, in any topos, negation so defined
becomes a monomorphism from truth-values to unary propositional operators.
Similarly, in the “generalized logic” over any metric space A, a Lipschitz func-
tion E is not recoverable from its zero-set alone. but is recoverable from its
family of superlevel sets, one for each constant A*F for F real.
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