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The Como meeting was something of a milestone, coming as it 
did just twenty-five years after the first international meeting on 
category theory held at La Jolla, California in 1965. The work of Kan, 
Grothendieck, and others had greatly intensified the elaboration and 
application of the subject in the ten years prior to La Jolla, and 
enormous development has continued uninterruptedly since. I have 
been asked, as a participant at both meetings, to speculate on how at 
least some of the threads of the subject might develop in the 
immediate future. The threads I have selected now were only dimly 
visible then,  for when J. L. Verdier described topos theory on the 
beach at La Jolla, most of us were slow to grasp its significance. 

The crystall ized philosophical discoveries which still propel 
our subject include the idea that a category of objects of thought is 
not specified until one has specified the category of maps which 
transform these objects into one another and by means of which they 
can be compared and distinguished. Thus, for applications of mathe- 
matics, to objectify is to mapify. Quite non-trivial in fact is also the 
idea that there must be definite domains and definite codomains and 
that there must be identity maps; even today there are many who 
think one could usefully "general ize" by omitting those require- 
ments, sometimes on grounds of dislike for the "stasis" they think 
they imply. However, in modern Greek "stasis" means "bus-stop"; 
how useless an intricate network of speeding buses would be without 
them, and how disembodied would be processes without states. In fact 
category theory is the first to capture in reproducible form an inces- 
sant contradiction in mathematical practice: we must, more than in 
any other science, hold a given object quite precisely in order to 
construct, calculate, and deduce; yet we must also constantly trans- 
form it into other objects. These precepts, together with the powerful 
guide to look for and use adjoints in all categories large and small be- 
cause they are the form of most constructions and deductions and 
many calculations and estimates, have guided us in our work in all 



the varied fields of mathematics. Most of us have struggled to ex- 
plicitly introduce these principles also into our teaching, and those 
who have persisted find that this explicit use of the unity and cohe- 
siveness of mathemat ics  sparks the many par t icular  processes  
whereby ignorance becomes knowledge, in learning just as it does in 
investigating. The need to teach, to explain and to respond to stu- 
dents' probing is often the genesis of problems taken up in "pure" 
r e s e a r c h .  

Though much remains to be done, it seems to some that we 
(that is, the community of category theorists with our ties to all the 
fields of pure and applied mathematics) have reached a unique posi- 
tion with regard to 'philosophy. I concentrate here on an outline of 
what is intended as a positive mathematical program. The history of 
possible philosophical objections to it will be treated elsewhere.  
Suffice it to suggest that M6bius, Hamilton, Grassman, Maxwell, etc. 
would not be among the naysayers. At least we can hope that sober 
application, of category theory to the ancient philosophical cate- 
gories, will not only clarify both but also renew respect for serious 
thought, through solid examples approaching adequacy to their con- 
cept .  

This attempt, by an admirer of rational mechanics, to include 
objective logic among the tools for arriving at a more accurate con- 
ception of space, will, I hope, not be dismissed by confusing it with 
objective idealism. The general science of the development  of 
scientific ideas has a big overlap with category theory. That general 
science does not claim that scientific ideas are self-generating nor 
does it depend on faith for the acceptance of its own conclusions, as 
idealism would. 

In the first section I start from the opposition between con- 
nected and separable objects to propose the tentative clarification, by 
a certain disjoint pair of classes of categories, of the conceptions of 
Being and Becoming respectively; how the one class arises from the 
other is the content of some resulting mathematical conjectures. In 
the second section, a specific mathematical formulation of the prin- 
ciple "unity-and-identity-of-opposites" is described in hopes of clari- 
fying dimensional i ty  in general and infinitesimals in particular,  
with again some mathematical conjectures aiming at further clarifi- 
cation. In the third section it is urged that certain pathologies 
"commonplace" since 1861/1890 need not be included in a more accu- 
rate conception of space and that both more physical ly-real is t ic  
models of computers as well as a more "objective" approach to 
Diophantine problems are already emerging from certain fascinat- 
ing calculations. 



I .  In the remarkable paper [QDC] (Quotients of Decidable Objects, 
Cambridge) a certain epsilon difference between classes of toposes is 
mentioned. This epsilon is in a way the victory of geometry over 
narrow logicism and is what [QDB] (Qualitative Distinctions, Boulder) 
is groping to clarify. There were actually two kinds of mathematical 
examples which around 1960 forced the qualitative generalization of 
the previous notion of sheaf: for a particular algebraic space, the 
replacement of  mere open subspaces by objects unramified over it, 
and for the category of all analytic spaces, the enlargement to a 
much nicer ca tegory  within which those par t i cu la r  spaces which 
happen to be "nicer" according to some previously-achieved defini- 
tion could be styled "representable". This raised the question: given 
a space in a topos of the second kind, what is the reasonable topos of 
pseudo-classical sheaves on it? Taking only a few of the simplest 
ideas from those circulated by the dozen or so who have strenuously 
worked on this problem, one arrives at the suggestion to study QD 
subtoposes of the topos of all spaces over a given space. Let's recall 
what QD means. 

While the term "decidable" has subjective connotations which 
are a powerful guide to certain investigations, and "separable" is 
well-established in commutative algebra, in geometry "unramif ied"  
has an objective history; here I may use "SUD-object" to remind my- 
self of the essential identity of all three. For brevity I'I1 use the term 
"neat" for objects which are both SUD and connected. There is a re- 
flection from any locally connected topos to a topos in which every 
object is a colimit of neat objects; on the other hand, there is no co- 
reflection (like Booleanization). In the cases where the reflection 
map is local, we have a start on the investigation of QD subtoposes. 
Note that "locally connected" and "sum" are relative to a base topos, 
which itself is quite special but (as in the Galois base of algebraic 
geometry) is sometimes much better not the topos of abstract sets; it 
would be fortunate if the hypothesis that the base itself be QD turned 
out to be sufficient As usual, if I say "set", we should imagine an 
object of the base topos. 

To clarify the above considerations, generalize to distributive 
| . 

categories and seek philosophical guidance. Even though the deter- 
mination of  which maps are epimorphisms is the more profound 
question studied with Grothendieck topologies, it takes place within a 
topos of the following kind. Call a small category C "extensive" if it 
has finite coproducts which yield an equivalence C/A+B = C/A x C/B 
and C/0 = 1 (this seems a minimum requirement on an op-fibration to 
conform with the notion of " f ami ly"  and with Grassmann ' s  
"combinatorics of continuous magnitudes"); for example, "the" ho- 
motopy category or the category of spaces of dimension at most 4. 



Then the topos G(C) of all those presheaves X on C for which merely 
X(A+B) = X(A)x  X(B) & X(0) = 1 contains any conceivable theory of in- 
tensive quantit ies,  either cohomologica l  or funct ion-theoret ic ,  as an 
(algebra) object. 

Further subtoposes of G(C) and G(C)/X based on "flatness" or 
the need to classify structures satisfying existential axioms are obvi- 
ously of great importance,  but passed over here to get to the main 
point. Those extensive categories which also have finite limits are 
called distributive, as discussed in the paper on their Burnside rigs in 
this volume [ECD]. 

A genera l  ca tegory  of  Being,  pa r t i cu l a r  ca tegor ie s  o f  
Becoming: this is a suggested philosophical guide for sorting the two 
original kinds of toposes and what they have become. The unity and 
cohesiveness of  Being provides the basis for Becoming,  and the his- 
toricity and control led variability of  Becoming produces  new Being 
from old. The unity and cohesiveness of  space suggests the following 
condition on a category: "Every object can be included in a connected 
object". This axiom is not true in many toposes, for example, in the 
Weil (or infinitesimal) topos. If the category is not a topos, the axiom 
should perhaps be strengthened to say that every object is an equal- 
izer of maps between connected objects; if the category is a topos, the 
axiom can be sufficiently checked on the one object 1 + I, but implies 
that any object is functorially included in a contractible object (i.e. C 
for which all C X are connected). This axiom for a category of  Being 
will be paired with another one. 

Here is a dialogue which suggests how the uni ty-and-cohe-  
siveness axiom may be used: Suppose you claim that the surface of  the 
earth and the point called the sky have "nothing to do with each 
other", whereas I claim they must. As a first step I consider the con- 
tractible container C of E+S which (though simple) may then become 
the basis for a more concrete connection, such as a scheme C' for a 
system of  airlines and airports. .[By the way, the unity-and- 
c o h e s i v e n e s s  ax iom can s o m e t i m e s  be d e m o n s t r a t e d  w i thou t  
invocat ion of  power  sets by using propert ies of  the four adjoint 
functors: components ,  discrete, points, codiscrete; namely,  if points 
map surject ively to components  and if  each discrete space maps 
inject ively to the codiscrete space it negates,  and finally,  i f  non- 
empty codiscrete spaces are connected,  then we need the injectivity 
of  pushouts of  injections.] 

The  c o n n e c t e d  objec ts  and the u n r a m i f i e d  ob jec t s  are 
"orthogonal" in the sense that any two maps C ~ U are either totally 
equal or nowhere equal. Hence the subcategory of  neat objects in a 
given distributive category is always a category in which every map 



is an epimorphism, i.e. a [QDC] site. The orthogonal axiom, that "every 
object X can be covered by a SUD object U", is proposed as a 
characterization of a category of Becoming. Why? Considering the 
maps between objects in the site as control processes or deformations, 
a figure U > X in a sheaf X may be considered to be a state of X, and a 
composite U' t~  U____x_~ X to be the state x' which x "becomes" under 
the process t. Dialogue: I think that if x~t = x2t now, surely xl = x2 
originally. You say no, there are many dissipative systems X. But no, 
I reply, you forgot to maintain enough information about history in 
your definition of present state; if you correct this neglect, you will 
obtain an epic hX ~ X where hX satisfies my original injectivity-of- 
becoming claim. I resolve this dialogue iff my category satisfies the 
above "QD" axiom (a really ineradicable dissipation would require 
another sort of site, possibly with "relaxation" idempotents in it.) 
Note that a fundamental process of analysis, where a neighborhood 
becomes a smaller neighborhood U ' c  U, inducing a section of any 
sheaf to become its restriction, is of this kind. 

[In a distributive category, an object U is SUD iff for any two 
maps A -""~.U the equalizer E is a coproduct summand: A = E+E'. E ' ~  A 
has the property that for any map T > E', if the composites 

T >E' > A--'-~ U 
are equal, then T = 0. Thus the requirement that all objects in a dis- 
tributive category be SUD could be extended to merely extensive cate- 
gories by demanding that every pair of maps have such a pair E, E'.] 

For any distributive category C and any space X in G(C), the lo- 
cally distributive site of SUD objects in C/X determines a QD subtopos 
P(X) of G(C)/X which is an approximation to "the particular category 
of Becoming which X is". Of course we have plucked X from its envi- 
ronment, so P(X) by itself is a too-clean abstraction from which to re- 
cover X; however, the composite P(X) :- ; G(C)/X ~ G(C), which we 

may call 0 X, retains the ties: for any R in G(C), Ox*(R)  is the pseudo- 

classical sheaf of intensive quantities of type R. 0 X as a classifying 

map shows that P(X) is canonically given the additional structure of a 
sheaf of C-algebras ("without idempotents"). Note that I still have not 
succeeded to describe this in a site-invariant manner starting from a 

given pair of toposes X ,  S satisfying suitable axioms, with the nature 

of X itself determining the corresponding refined version of the 
fiber P(X). I hope that the above clarifies the problem and that the 
several efforts in this direction will combine to solve it. 

The normalization P(1) = S and the QD reflection suggest that a 

suitable axiom on X might just be that its QD reflection map is local 



(which is similar to the possible dual axiom that ---1--1 is essential). This 
strong localness tie persists when 1 is generalized to a discrete space. 
However, for X of higher dimension, the extra essentialness adjoint of  
the refined P ( X ) ' ' ~  X / X ,  while (remarkably)  product -preserving,  is 

not exact, and X / X  ) ( X / X ) Q  D may not be local; the image of the 
composite may be a significant topos. We'l l  return in the next section 
to the meaning of  "higher  dimension."  

There  are many dis t r ibut ive  categor ies  which satisfy both 
axioms: in that case every object X is the image U ~ X ¢,.~C of a map 
from a SUD object to a connected object. For example, consider the 
topos of quivers (i.e. irreflexive graphs). However, they don ' t  satisfy 
the fur ther  requirement  on a general category of  Being that "the 
product of  connected spaces is connected". For example, if A is the 
connected quiver with a single arrow, then A 2 = A+2D where D is the 
naked-do t  quiver.  

The condition, that a category of Being should not only be co- 
hesively uni fy ing but also have its connected objects closed under  
finite product,  justif ies Hurewicz 's  definition IX,Y] = ~ o ( Y  X) of the 
homotopy category, expressing a definite kind of  qualitative aspect of  
spaces. Such a category of  Being cannot be simultaneously also a 
pure category of Becoming. For, in that case, the neat objects would 
be subobjects of 1, the topos thus localic; but a product-preserving 
cocont inuous functor on a localic topos is always left exact, hence 
preserves any equalizer 2 : " I r ~ I' of  connected objects represent- 
ing 2, so an inconsistency would be reached by taking 7go as the 
f u n c t o r .  

I I .  The intui t ive idea that any one-dimensional  connected  group 
must be abelian could probably be proved in any suitable topos. We 
know what "connected" means, but what is "one-dimensional"  for an 
o b j e c t ?  

It seems that a significant portion of algebraic geometry and 
different ial  geometry  does not depend so much on the part icular  
algebraic theory used to construct  models  for it but is of  a more 
f u n d a m e n t a l  c o n c e p t u a l  n a t u r e .  " O n e - d i m e n s i o n a l " ,  l ike  
"connec ted" ,  is actual ly a ph i losophica l  concept ,  re lated to the 
minimal  Hegelian level of  figures which must  be considered within 
an arbitrary space in order to determine that space 's  connectedness.  

By a level in a category of  Being, I mean a ("downward")  
functor from it to a smaller category which has both left and right 



adjoints which are full inclusions. Such a pair of  categories and 
triple of  functors is a uni ty-and- ident i ty-of-opposi tes  (UIO) in the 
sense that the big category unites the two opposi te  subcategories 
which in themselves are identical with the smaller category. One can 
picture the big category as a (horizontal) cylinder,  some objects of  
which lie on the identical right or left ends. The two ends are oppo- 
site not only because we picture them so, but for the intrinsic reason 
of  adjointness; every object in the category lies on a unique hori- 
zontal thread, two objects lying on the same thread iff the downward 
functor assigns to them isomorphic objects in the smaller (or lower) 
category. All is determined by the one functor. If  the big category is 
a topos, the right-hand end will automatically be a subtopos, but the 
"identical" left hand end will usually not be. To say that a particular 
object belongs to the level has two sharply opposed meanings:  we 
may say that it is a sheaf for the level if it belongs to the right-hand 
end, but that it negates a sheaf for the level if it belongs to the left 
hand end. The two idempotent adjoint endofunctors of the big cate- 
gory obtained by compos ing  the three are cal led the coskele ton 
(right) and skeleton (left) functors for the level; the skeleton and 
coskeleton of  any given space (object) in Being provide a kind of  in- 
terval, graspable at this level, within which the possibly more com- 
plex space being studied must lie. The basic starting example of all 
this is that where the downward functor is the unique one to the 
terminal category; then the whole big category of  Being constitutes 
just  one thread, the unique sheaf being the terminal object  ("pure 
Being") and its negative being the initial object ("non Being"); the 
two opposed subcategories are singletons in this case. 

Within  a given category of  Being,  cons ider  the part ial ly-  
ordered class of  all levels within it whose adjointness is enriched 
over a given base topos which is a category of Becoming and which 
itself has the structure of a level, to be thought of as the lowest non- 
trivial level; assume that both the initial object as well as the termi- 
nal object are sheaves for this base level; the general sheaves for 
this base level are commonly called "codiscrete" or "chaotic" objects 
within the big category of Being, and the subtopos of them may be 
called "pure Becoming".  The negative objects for this level are com- 
monly called "discrete" and the subcategory of  them deserves to be 
styled "non Becoming".  The objects of  the base category (which is 
identical with the two opposite subcategories of  pure Becoming and 
non Becoming when the inclusion functors are neglected) can just  
be called "sets". However,  this base topos, although we have re- 
stricted it to be QD, is not necessarily the category of abstract sets; 
part of  the philosophical content of  the work of  Galois is that, for the 
Being of  algebraic geometry  over  a non-algebraical ly  closed base 
field, a much more accurate picture is achieved if the base is taken to 
be a wel l -determined Boolean topos of  more-subt ly  Becoming  sets 



which is not of  the purest abstract kind where the axiom of  choice 
would hold. The base in fact seems in examples to be determined by 
the given category of Being itself, either as the latter 's QD reflection 
with the extra localness condit ion supplying the right adjoint pure 
Becoming  inclusion,  or else (for example  s implicial  sets) as the 
d o u b l e - n e g a t i o n  sheaves  with the extra  essen t i a lness  cond i t ion  
supply ing  the left adjoint  inclusion (in the latter case it is in 
Hegelian fashion always the smallest  level for which both 0,1 are 
sheaves). Within the class of all levels over the base (of course it is a 
set in fact if the category of  Being is a topos), the base itself is often 
fur ther  d is t inguished by having a still further left adjoint  to its 
discrete inclusion,  this extra functor  therefore assigning to every 
space in Being its set of  components.  The downward (non faithful) 
functor itself we regard, of  course, as assigning to any space its set of  
p o i n t s .  

The relation between the trivial level and the base level above 
it is only the first case of  a possible strong relation between two 
levels which (hoping not to do too great an injustice to Hegel) I will 
call Aufhebung relative to the given category of  Being: this is the 
relation between a lower level and a higher level whereby the first 
level is not only included (on the left and equivalently on the right, 
or s imply that the longer  downward  functor  factors  across the 
shorter one) in the higher, but moreover  that the longer left adjoint 
inclusion factors across the shorter right adjoint inclusion; equiva- 
lently, the higher  coskeleton functor fixes both the skeleta and the 
coskeleta in the sense of  the lower level. A very simple picture (not 
involving toposes) involves taking the basic downward functor to be 
any given map from a seven-element totally ordered set onto a three- 
element  one, which just  amounts to a partition of  the big set into 
three non-empty closed intervals; an arbitrary intermediate level is 
simply a finer partition of each of these coarse intervals into finer 
subintervals, but an intermediate level is an Aufhebung of  the lower 
one iff the following more stringent condition is satisfied: among the 
subintervals within each coarse interval, the left-most one is a sin- 
gleton. In this simple example, as in some but not all examples in- 
volving toposes,  every level has a smallest  aufgehobenen level over 
it, which could reasonably be called "the" Auflaebung of  it. 

Un i ty - and - iden t i t y -o f -oppos i t e s ,  the Aufhebung  re la t ion be- 
tween two such within a given unity: this is a second proposed philo- 
sophical guide. It is not limited to distributive categories, nor is the 
dual case of an inclusion which has both left and right adjoint re- 
tractions without interest; that dual relation holds for example be- 
tween graded modules and chain complexes, and it is the image of the 
canonical  map between the opposi tes  which defines the homology  
f u n c t o r .  



Having described a basic framework, we can now return to the 
question of the intrinsic meaning of "one-dimensionali ty" of an ob- 
ject within such a framework. The basic idea is simply to identify di- 
mensions with levels and then try to determine what the general di- 
mensions are in particular examples. More precisely, a space may be 
said to have (less than or equal to) the dimension grasped by a given 
level if it belongs to the negative (left adjoint inclusion) incarnation 
of  that level. Thus a zero-dimensional space is just a discrete one 
(there are several answers, not gone into here, to the objection 
which general topologists may raise to that) and dimension one is the 
Aufhebung of dimension zero. Because of the special feature of di- 
mension zero of having a components functor to it (usually there is 
no analogue of that functor in higher dimensions), the definition of 
dimension one is equivalent to the quite plausible condition: the 
smallest dimension such that the set of components of an arbitrary 
space is the same as the set of of components of the skeleton at that 
dimension of the space, or more pictorially: if two points of  any 
space can be connected by anything, then they can be connected by 
a curve. Here of course by "curve" we mean any figure in (i.e. map 
to) the given space whose domain is one-dimensional. 

Continuing, two-dimensional spaces should be those negating a 
subtopos which itself contains both the one-dimensional spaces and 
the identical-but-opposite sheaves which the one-dimensional spaces 
n e g a t e .  

I f  by " funct ion"  we mean a map with one-dimensional  
codomain, then any function naturally defined along each of the sur- 
faces i n - a n  arbitrary space uniquely extends to a smooth function on 
the space itself. That "surfaces" might even be replaced by "curves" 
is the basis of recent interesting work on infinite-dimensional dif- 
ferentiation (as it was the basis of the very first work 250 years ago 
on that subject); the possibility of using curves as test figures may 
not be the result of  the somewhat restrictive category of spaces con- 
sidered, but rather of a more refined property of the basic codomains 
of functions, such as the line and circle. These are not only one-di- 
mensional but even belong also to the Aufhebung of a still smaller 
level, since they are retracts of map-spaces of infinitesimal spaces. 

The infinitesimal spaces, which contain the base topos in its 
non-Becoming  aspect,  are a crucial  step toward de te rmina te  
Becoming, but fall short of  having among themselves enough con- 
nected objects, i.e. they do not in themselves constitute fully a 
"category of cohesive unifying Being." In examples the four adjoint 
functors relating their topos to the base topos coalesce into two (by 
the theorem that a finite-dimensional local algebra has a unique sec- 
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tion of  its residue field) and the infinitesimal spaces may well negate 
the largest essential subtopos o f  the ambient  one which has that 
property. This level may be called "dimension E "; calling the levels 
(i.e. the subtoposes essential over the base) "d imensions"  does not 
imply that they are linearly ordered nor that the Aufhebung process 
touches each of them. The infinitesimal spaces provide (in many 
ways) a good example of  a non trivial unity-and-identi ty-of-opposites 
inside the ambient topos of  Being: explicitly recognizing the t w o  in- 
clusions,  as spaces which could be called infini tesimal and formal 
spaces respect ively,  may help clarify the confus ing  but powerful  
interplay between these two classes which are opposite but in them- 
selves identical. The calculation of the E - ske l e ton  and E - c o s k e l e t o n ,  
of  a space which is neither, needs to be carried out, and also the cal- 
culation of the Aufhebung of dimension E .  

The idea behind the identification of  the levels in a category of 
Being with dimensions is that a higher level is a more determinate 
general Becoming,  that is, it contains spaces having in them possi- 
b ly-more-var ied  informat ion for de termining  processes.  Thus  one 
conjectures that dimX only depends on the category P(X) of particular 
Becoming associated to X (and not on the important structure sheaf 
which recalls for the little category the big environment in which it 
was born). In other words, if we have an equivalence of  categories 
P(X) ~ P(Y), then X,Y should belong to the same class of  UIO levels 
within the category of Being in which they are objects. Suitable hy- 
potheses to make this conjecture true should begin to clarify the re- 
lationships between the two suggested philosophical  guides. 

I l l .  Why does the epsilon difference leave room for the triumph of  
geometry over narrow logicism? What might  have led Grothendieck 
to propose  his (still unpubl ished)  program for " tame topology" ,  
wherein he arrived at roughly the same real analytic spaces as logi- 
cians working on a Tarski problem of "decidability"? It seems that all 
attempts to characterize continuity in a purely intensive logical way, 
such as the frame algebra, leave another kind of room in spite of  
their profound contribution to calculations - room for the obviously 
n o n - p h y s i c a l  s p a c e - f i l l i n g  c u r v e s  and n o w h e r e - d i f f e r e n t i a b l e  
functions. Though we have been led to believe that this subjectively- 
generated Raum shows that our basic intuition of  space is unreliable, 
still we have not been shown anything in the real world which could 
more than provisionally be modeled as a discrete infinity. Rather 
than such speculations about the unreliability of  knowledge,  i t  seems 
that still more serious work is needed, marshall ing all the achieve- 
ments of  subjective logic and objective logic, of geometry and  algebra 
to hone still more  realistic models of  continuous space. As several 
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have suggested, a guide is to consider figures, i.e. maps to the space, 
as fundamental  in determining it, with intensive quantities (i.e. maps 
from the space) being derived by naturality rather than the other 
way around; this does not metaphysically mean of  course that the 
nature of  the domains of the figures is not derived by a careful as- 
cending interplay between all four of  the ment ioned subjects. 

The above considerations are related, as suggested in a Como 
discussion, with old problems such as Fermat 's .  Diophantus probably 
considered natural numbers not in the abstract way which we habit- 
ually now do, but as born from actual objects. While the method of  
formally adjoining negatives and ascending to powerful  cohomologi-  
cal calculations etc. leads to many results, we should not forget the 
objects themselves.  Just as realizing cohomology classes by vector  
bundles  via K-theory permi t ted  powerful  interplay be tween those 
calculations and directed manipulations of the objects by actual maps, 
so a similar possibility is opened by the Burnside rig of a distributive 
category,  wherein polynomial  equations satisfied by objects are re- 
vealed as specific structure on the objects themselves. For example, 
the equation x = 1 +2x arises from an object with a point and operated 
on by a 2-generator  monoid,  with an additional inverse map. But 
even the dangerous x = l+x does not lead to unbridled infinity. While 
the study of linear equations on distributive categories is packed w i t h  
surpris ing subtleties,  h igher-degree  equations are also approachable  
with, for example, homogenei ty retaining some of  its usual properties 
when interpreted in this more demanding functorial manner. I was 
surprised to note that an isomorphism x = 1 + x 2 (leading to complex 
numbers  as Euler characteristics if they don ' t  collapse) always in- 
duces an isomorphism xT=x. 

The rough similarity between Grothendieck 's  tame spaces and 
the finitely sub-analytic [FSA] objects considered in logic is in fact a 
major  difference; the same sort of  difference exists between real 
algebraic geometry and semi-algebraic sets, as well as between the 
ordinary con t inuous  PL category and the polyhedral  ca tegory of  
negative sets. All of  these are quite different from categories in 
which countable coproduct  decomposi t ions  are common.  The differ- 
ence within each of  the three pairs ment ioned may all exemplify a 
s ingle  general  process  which I ' l l  call Ar is to te l ian  in te rvent ion ;  
some such analysis seems also basic to attempts to hone a more physi- 
cally realistic model  for the p rogramming  of  "digi tal"  computers .  
Aristotle pointed out that the continuum is divisible but not infinitely 
divided. One can break a stick. Repeating that and all which it led to 
for 40,000 years has created a lot of  indispensable chairs, buildings, 
etc. but has not changed the fundamental continuity of  space; nei- 
ther will bill ions of times dividing possible current-levels into "yes 
and no". 
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Given a map of coherent toposes, there is not only the usual 
induced topology but there are also topologies in which only the in- 
verted maps between c o h e r e n t  objects are taken as covers. For ex- 
ample, to construct the generic solution of the equation x = l+3x+2x 2, 
consider first the classifying topos for the free algebraic theory with 
one constant, three unary, and two binary operations; the free alge- 
bra on no generators determines a point of this topos. If we were to 
consider the full induced topology, our topos would collapse to that of 
discrete sets; a coherently induced topos however might not only 
satisfy the equation but have a non-trivial Burnside ring, whereas 
just because it lacks the metaphysical "minimality of the fixed point", 
it may provide a more physical model of potential lists and trees. We 
don't  yet know which presentations of rigs can be Burnside-realized 
from distributive categories, because the very concreteness of the 
non-isomorphisms in the latter may give rise also to unexpected iso- 
morphisms. We also don't  know whether finitely subanalytic sets can 
be obtained via such a uniform procedure from some sort of continu- 
ously tame ones. Another possibility would be to take not the base 
topos but the infinitesimal one as the domain of the topos map which 
is used to induce the Aristotelian intervention - is it possible that 
even after such an explosion, functions could still have a well- 
defined derivative at every point? Certainly the resulting sites need 
not be Boolean; for example, consider a half-open interval x: it 
should satisfy x = 2x but its endpoint is not a coproduct summand. 

Naturally, models like the polyhedra constructed from below 
from real space are more satisfying than those constructed from 
above by classifying abstract algebras, but as usual the goal is to be 
approached by pushing hard from both sides. 

If the general program proposed above is correct at least in 
rough outline, it would serve both the advancement and the dissemi- 
nation of the subject to have it clearly worked out. As clearly formu- 
lated in Grassmann's introduction, only a good philosophical pream- 
ble can orient the student toward what kind of applications of a 
purely mathematical development he should look out for; that theory 
of pedagogy is at least as deserving of trial as the pragmatist theory 
of teaching only skills, which as we have seen did not achieve its 
goal.  

In spite of temporary setbacks of all kinds, the many-sided and 
passionate advance of category theory has been on the whole re- 
markably steady. On the basis of all that work many questions of both 
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fundamental  and applied nature are now becoming clear, thus the 
future of our science is bright. 
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