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Qualitative Distinctions Between Some Toposes
of Generalized Graphs

F. WILLIAM LAWVERE

I have divided this paper into three sections as follows: Section I sketches,
in a somewhat impressionistic way, the general conceptual context which I
intend to exemplify in section III; section II reviews some of the basic con-
structions on presheaf categories which are implicit in nearly all branches of
mathematics, with some examples which it is hoped will appeal to computer
scientists; section III describes three sequences of “simplest possible” exam-
ples of some of the basic phenomena, pointing out some of the peculiarities
which arise even within these sequences.

1. This section should become clearer on a second reading, after having
studied the rest of the paper.

“Being is doing”, and hence particular being is known (at least partly) by
what it can do. If B is an object in a “gros” topos B of cohesive active
sets, what it can do is to continuously parameterize and dynamically act on
mathematical structures. The zeroth form of mathematical structure is the
abstract sets which form a Boolean topos and which can be realized in two
opposite ways (chaotic and discrete) S &% B as very special extreme cases
of “cohesive active” sets. The category S(B) of all possible ways that B can
parameterize and act on abstract sets is again a topos, but of a qualitatively
different sort called “petit” by Grothendieck (typically both the gros B and all
the petit S(B) are proper classes from the mid-century “set-theoretic” point
of view; it is not cardinality but another quality which distinguishes the two).
There is a geometric morphism of toposes 8/B — §(B) from the non-petit
“comma category”, which already exhibits the qualitative difference even in
case B = 1, the terminal object of B: for 8/1 = B but §(1) = §, and the geo-
metric morphism B — § is the functor whose right adjoint is the inclusion
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262 F. WILLIAM LAWVERE

as chaotics and whose left adjoint is the inclusion as discretes; moreover,
in this case the discrete inclusion has a further left adjoint 7y : B —, ¢
which assigns to each cohesive/active set B the corresponding abstract set of
its components/orbits with the adjunction morphism B — 7,(B) being the
universal map to a discrete space; moreover, the truth value object Q of 3
is connected my(£2) = 1, hence in particular Qp # 14 1 nor any other sum gg
that B cannot be Boolean, whereas s = 1+ 1 (the earmark of Booleanness)
and 7 (being a left adjoint) preserves sums so that in a positive sense 8 — §
is far from an equivalence. In most determinations of B which I have consid-
ered, S is in fact determined by B in that the codiscrete inclusion § — 8 jg
characterized as the smallest subtopos of B which contains the empty object
0 of B. Moreover, it seems essential that 7y has a tendency to preserve finite
products for gros B. Thus what I have said puts many stringent restrictions
on the topos B.

I have used above the term “space” as short for cohesive/active set; already
in Grassmann it was clear that space is generated by, and lays the foundation
for, motion and hence that general spaces have aspects of both. These two
aspects can be illustrated in somewhat pure form as follows: If B is essen-
tially determined by a poset of regions in some space, ordered by inclusion
(pure cohesiveness in one of its simpler manifestations) it can still act in the
following sort of way (presheaf): Let UX be the (abstract) set of all X-valued
smooth functions on U for any region U of B: then an inclusion U’ c U in
B acts by restriction to give UX — U'X, the totality of sets of functions
and restriction-actions determining a single object X of S(B). At the oppo-
site extreme (pure activeness) we might consider a B which is determined
by a suitable monoid (for example the group of all rigid motions of physical
space under composition, or the set of non-negative time durations under
addition) and take for §$(B) the category of all right actions of B on abstract
sets. But already here the “pure” activeness passes over into cohesiveness: if
the monoid B satisfies the cancellation property which says that /eff multi-
plication by any element is a monomorphism, and if 7p € §(B) denotes the
regular representation [the Yoneda-Grothendieck-Dedekind-Cayley embed-
ding gives a single object in the case of a monoid] then the topos S(B)/Ts
(whose objects are objects of S(B) equipped with a morphism to 7 and
whose morphisms are commutative triangles over 7p in S(B)) can also be
expressed as S(B)/Tp = S(B/*) where * is the unique object of B, but B/« is
in such a cancellative case a poset. Thus in such a case the category S(B)/Tp
of “non-autonomous dynamics” derived from pure action S(B) turns out to
be pure cohesiveness. [Caution: If B is a group then S(B)/Tp = § since
then the poset B/x is codiscrete.] Of course already the “orbit set” functor
S(B) — § reveals some of the cohesiveness induced by dynamical action:
if two elements of a state space X € S(B) can be moved into a common
element by some acts of B, they thereby “stick together” in one sense. If a
monoid B, acts on a pure space By then there will be an induced action of B,
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on the poset of subregions of By and the resulting semidirect product By x B,
is a genuinely mixed cohesive/active set, leading to S(By x B)) etc.

Many of the kinds of mathematical structures which need to be parame-
terized and acted on by B are commonly understood in their constant form
as conditioned diagrams in a category S of abstract sets, for example a group

1 — .Soc-—— S x S, or a poset E & S (where the induced single £ — S x §
ijs monomorphic and contains S — E as the diagonal and is the “order re-
lation”), etc. Hence the variable groups, posets etc. may to a large extent be
treated as exactly similar diagrams in the topos S(B) of variable abstract sets;
that is

B-variable A-structured sets

= A-structured B-variable sets

often holds, where A is any “theory” of quite a general kind. Here B-variable
sets = S(B) = the topos of abstract sets parameterized and acted on by B.
One of my aims will be to bring out properties of the “petit” toposes §(B)
which will distinguish them in a positive way from the “gros” toposes such
as B. A typical S(B), unlike the special case §(1) = §, will not be Boolean in
its equational logic
QxQ § Q,

but Heyting like B; on the other hand its object Q of truth values will almost
never be connected, unlike B.

Why is it important that a gros topos £ have a finite product preserving
components functor my - discrete 4 £(1,—)? For one thing it means that
the Burnside ring of £ is the monoid ring (of measures under convolution)
of the monoid of finite connected objects under cartesian product, avoiding
the series of structure constants involved in a petit topos such as G-sets for
a group(oid) G. More importantly perhaps, it means that for any category A
enriched in £, (that is a category whose homs are “spaces” A(A', A) € £ rather
than abstract sets) such as A4 = £ itself, we can begin the qualitative “homo-
topical” classification of the objects of A without fractions by defining an
associated abstract category mA via (wA)(A’, A) = myA(A’, A), being assured
by the product-preserving property of my that these “homotopy-classes” of A-
maps can still be composed. Roughly, if A4 is the study of specific processes
ay — a, in objects A4, then 7 4 is the study of the higher ramifications of the
ensemble of conditions “there exists a process ag ——+ a; of the kind allowed
by A”; here by “process” we mean one which proceeds by one simple law at
least to the extent that if for example

L__a._..) A

ay = alg, aq
pox =1y JOTPJI le a
A
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with 4’ a terminal object in A, we want L also to be “contractible” in 4 in the
sense that L becomes terminal in 7 4. Such considerations are so compelling
that one is driven to believe that if some approximation £ to the notiop
of “continuous map” fails to have product-preserving 7, then £ should be
changed (as it is often done to achieve cartesian-closure).

II. The next few paragraphs may be simply skimmed (to assimilate my
notation) by any reader already familiar with the basics of category theory,
of which they are mainly a review.

The examples which we wish to consider are all presheaf toposes, so that
Grothendieck topologies do not play a major role although coverings may,
Thus for any small abstract category C (i.e. one whose total set of morphisms
constitutes a single object in the category S of abstract sets, and whose do-
main, codomain, identity specification, and composition operations are maps
in $) we will be considering the category S€” of all contravariant functors
from C to S and all natural transformations between these; an object X of
SC” may equally well be considered as a right action of C on a set which is
partitioned into sorts parameterized by the objects of C and such that when-
ever C' 24 Cisa morphism in C and x is an element of X of sort C, then
xA is specified as an element of X of sort C’, all this being subject to the
conditions

x1C=x,

x(Au) = (xA)p whenever C" -2 C' 2 C in C.

Such an action X is also often referred to as a C-set when there is little

danger of confusion with other possible uses of that term. Similarly the C-

naturality of any morphism X L+ ¥ in the category S€” is really just the

homogeneity condition
Sf(xA) = f(x)A
wherein, of course, the first action of A € C is the one given by X and the
second by Y. The Yoneda-Grothendieck-Dedekind-Cayley embedding
C — s¢
Tc

is the functor which associates to each object A of C the C-set T¢(A4) =
C(—, A) whose C-th sort is the set C(C, A) of C morphisms C — A, with
action by composition: C’ 4, ¢ X, 4; this is a functor because for any
A =+ A" we get an induced C-homogeneous map C(—A) — C(—, 4') which
by the associativity of composition in C behaves functorially under compo-
sition 4 — A’ — A". The famous lemmma of the four illustrious mathe-
maticians says that T¢ is full embedding C — $€” (so that it is justified and
often convenient to confuse 4 with 7¢(A4) = C(—, 4)) and says much more,
namely that for any C-set X and for any object A of C, the set of elements
of X of sort A4 is naturally identifiable with the set of $”-morphisms from
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C(—,A) to X. It is thus justified, as well as extremely useful, to adjoin to the
above parenthetically-introduced abuse still a further abuse of notation and
to henceforth regard the elements of X of sort A as morphisms 4 — X in
§€”: thus the action of C on any C-set becomes a special case of composition

of morphisms
2+ . C
\ [+
X

now all in S€” as does the application of a morphism f to an element, and
the homogeneity (or naturality) property of every X — Y in $€” becomes
a special case of the associativity of composition in §€”;

Cl

c 2. C

xA l\
S

X — Y

In case the objects and morphisms of C have some kind of geometrical inter-
pretation, it is often helpful to imagine that the more general objects of $€”
push that interpretation to a natural limit: an object 4 of C may be consid-
ered in §€” as a generic “figure” and any 4 — X as a particular figure in X
(quite possibly singular, i.e. not necessarily monomorphic) of sort 4. Then
if X’ = xA in X one may consider that A establishes change of figures in X
and that an equation x;4; = x»4; is an incidence relation; the naturality or
homogeneity of morphisms X — Y is therefore essentially the preservation
of incidence relations. One must distinguish between elements (figures of any
generic sort) and points. By the latter we understand morphisms 1 — X
where 1 is the terminal object of S¢”, defined as the C-set which for any A4
has exactly one element (figure) of sort 4 : 4 4, 1. Then it easily follows
that for any X there is exactly one morphism X — 1, also denoted by X.
[This useful abuse (due to Johnstone) is justified by the fact that for any
object X of any category X, the comma category X /X has a terminal object
1x which is none other than the identity map of X in X, and that for any
object E of X /X the unique E — 1y is represented in X as €

E —~S—- X
e\/x
X

where € is the structural datum in X that any object in X /X must have.]
Now a morphism 1 =+ X must operate at each sort, picking an element
x4 of X of each sort 4; but since the action of C on 1 by any A is trivial, and
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x is homogeneous, we therefore have
xo=xch foral C' - C in C.

For example, if 1 € C [i.e. if C itself has a terminal object, in which
case it is easy to see that C(—, 1) = 1 the terminal object of S, a further
justification for the Yoneda abuse] then any point x of X is determined
by a single figure x; of sort 1, by xc = x,C for all C == 1 in C. Since
in combinatorial geometry there are often many higher-dimensional figureg
with few specified vertices, and since in dynamical systems there are often
no rest states at all, it is not surprising that morphisms X — Y are often
not determined by their values on points alone: we may have

S
1-3X3Y fx=gx forallsuchx
g

f#8.

Of course if f # g then there is some A in C and some figure x of sort 4
in X with fx # gx in Y. It is sometimes interesting to consider the full
subcategory Yc of S € consisting of all those Y such that for all 4 in C and

any two figures A4 :r Y with y, # y, there exists a point 1 —— A for which

na # ya; in other words, there is some point in the generic figure 4 such
that the g-th vertex of y, differs from the a-th vertex of y,. Consideration of
Yc may seem especially pertinent when 1 € C and when C C Y¢; however,
we will always have Yc # SC” unless C = 1. Yc is cartesian closed (see
below) but does not have a truth-value object (see below) and is hence never
a topos unless C = 1; the advantage of being able to treat also the power
objects etc. in SC€” as generalized C-objects, as well as the use of superior
set-like exactness properties toposes enjoy, derives from the fact that many
conceptual constructions on objects (even if starting from objects of Y¢) will
naturally lead to objects of S€”. Since Yc is closed under cartesian products
IT and arbitrary subobjects in S€”, it follows that for every X in S€” there
is a natural surjective map X — X% to an object of Yc such that

X ——s Xt
VY € YoV faAf ) i;

The reader may wish to calculate X for some of the kinds of graphs discussed
below.

The condition 1 € C may for some C not be strictly true yet quasi-true
up to “splitting idempotents”. There is for any C a “Cauchy-completion”
CccCc s consnstlng of all retracts R of objects of C in the sense that

there exist R T_* A morphisms of S€” such that 4 € C, pi = 1. It is always
P
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the case that there is an equivalence of categories SC. — S€”. By 1 € C,
we thus mean that for some A4 in C there is for every C a morphism C = 4
such that ecA = e for all A; thus in particular e4 is an idempotent but of the
very special kind sometimes called a “right zero” (unlike two-sided zeroes,
such are not necessarily unique, as we will see). In general the idempotents of
C correspond to objects of C, and one says that C is “closed under splitting
of idempotents” or “Cauchy-complete as an S-category” if C — C is an
equivalence of categories. C can be constructed purely abstractly from C
without reference to actions by defining, for any 4;0,,, i = 1,2 with ¢? = ¢;,

Cler,e2) ={A€ C(A4,,42) | ey =2 = exA}

noting the two equations, and verifying the required properties, including
2-functoriality and C = C for any C. Note that 1, € C(e,e) is just e in
C. [For example, if C is the category of all smooth maps between all open
subsets of all Euclidean spaces, then C is the category of all smooth manifolds.
This powerful theorem justifies bypassing the complicated considerations of
charts, coordinate transformations, and atlases commonly offered as a “basic”
definition of the concept of manifold. For example the 2-sphere, a manifold
but not an open set of any Euclidean space, may be fully specified with its
smooth structure by considering any open set 4 in 3-space E which contains
it but not its center (taken to be 0) and the smooth idempotent endomap of A4
given by e(x) = x/|x|. All general constructions (i.e. functors into categories
which are Cauchy complete) on manifolds now follow easily (without any
need to check whether they are compatible with coverings, etc.) provided
they are known on the opens of Euclidean spaces: for example, the tangent
bundle of the sphere is obtained by splitting the idempotent e’ on the tangent
bundle 4 x ¥V of A (V being the vector space of translations of E) which is
obtained by differentiating e. The same for cohomology groups, etc.]

Even if C is a monoid, i.e. a category with one object C, C will not be
a monoid if C has idempotent elements other than the identity 1. It will
often not even be equivalent to C [the question of equivalence is different
since C could have elements f, g with fg = 1 but gf # 1 then e =8 f

determines an object e # 1¢ in C, but e 1, ¢ is an isomorphism in C; in
other words, such an idempotent ¢ would already be split through C itself,
but in a non-trivial way.]

Since we are primarily interested in S€” ~ SC", we will freely pass back
and forth between C and C in describing objects X: for minimalistic suffi-
ciency, we may prefer C, especially when it is a monoid; but C usually gives
a more plastic vision of the kinds of figures which X really has and their
relationships.

The most important example of the above, and probably of our whole
discussion to follow, is the three element monoid A,:

11, €0, € ee =e; i,j=0,1
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This is a non-commutative monoid consisting entirely of idempotentg
(therefore called a “band” by semigroup theorists) but the other two equa-
tions tell us that moreover the two new objects in A, are both terminal objects
(so we may say 1 € A;) and hence in particular isomorphic. Thus we have

A, < A
N\ !
121

where the vertical functor is an equivalence of categories with two quasi-
inverses and all three resulting presheaf toposes are essentially the same. In
the two-object category pictured, the original monoid is recovered as all the
endomorphisms of I, and

e,-=8,-I i=0,1

where 1 -2 1 -1 1 is of course 1,. We may even abbreviate §; to i, in which
case we can say that 0,1 are the only points of I even in § A’ but that I has
one further element, namely the figure 1;. In general a figure 1 X, X is often
called an “edge” of X and the two points xdy, X9, are the initial and terminal

vertices of x
dp
Xi=X 3,' \\‘: lx
X

Given any point 1 -2+ X of X, there is a corresponding “degenerate edge”

atp1 1, 1 2, X whose initial and terminal vertices are both p. In general
an edge x for which x8y = x9, is called a “loop” at the corresponding point;
there may be several loops at p but the degenerate loop pl is always among
them though it may be the only one. Thus we have in this particular topos a
good way of picturing the “inside” of any object X, the general elements as
arrows, but the degenerate loops as dots. Thus for I itself we have a single
non-degenerate arrow:

I=|e Lo
1

and there are morphisms
I - C —p 1

I II I
=e — [8] — =

This illustrates that

1) [in contrast to the category S¥” of “irreflexive” graphs where there are
not necessarily any loops and where even if there are loops there is no spe-
cific one preserved by morphisms: P =|e =3 e | is a category which happens
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to be determined by its underlying reflexive graph structure] in our “reflex-
ive” graphs S&” an edge may become degenerate under the application of a
morphism such as C — 1 orI— 1, and

2) it may be useful to consider quotients (like C) of objects of C (even
when C ¢ C) as further “generic” figures, so that various types of singular
figures (such as loops) also become “representable” at least by objects of $C”:
the surjection I — C induces the inclusion

(C,X) = (LX)

of the set of all loops into the set of all edges for any reflexive graph X.
Another important figure type in this category is

e

Note that there is a morphism E £+ I which has two sections I ﬁ E (ie.

ps = 1} = ps’) but that there are two more morphisms I — E whicfh are not
sections of p (in fact they factor across 1) because E has four edges in all. E
is not even a quotient of any object of C, but it is a quotient of 2I = I+1 the
disjoint sum (coproduct) of two copies of 1.

An object of $47 which has several universal significances is

Q= (’\4:)
0~—"1

which has two points but five edges in the configuration shown (which unique-
ly specifies the action of 8y, 8, on all five). The most basic of these is that
it classifies subgraphs. Here by a subgraph of X we mean (not a graph with
a property but) a graph A4 equipped with a specified “inclusion” morphism
A — X, denoted for example by i, when it is not understood: for example
there are two different subobjects of I which, without their inclusions, are
the same 1, and two different subobjects of E which without their inclusions
are the same I. The only condition for a morphism # (in a topos such as
our presheaf toposes; one might well need to complicate this in a non-topos
such as the ¢ mentioned before) to be a subobject inclusion is that it be a
monomorphism, i.e. satisfy the cancellation property ia, = ia, = a, = a; for
any T 4 A; this I has essentially five subobjects 0,1, 0,1, {0, 1} where the

a
last is 22H I with 2 =1+ 1 the “discrete” graph, while E has seven and for
the generic loop C we get three. Here “essentially” refers to isomorphism in
the comma category $A" /X with X =I or X = E or X = C for example. In
more detail, we write A % B to mean we are given i4, {pg monomorphisms

and can find B so that iy = fip in

A-r.B

u\a/ﬂs
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We also write x € A to mean that x is any morphism with codomain X while
we are given a monomorphism 74 and can find an « such that x = iya

N/

In either case the 8 or the o which “proves” the inclusion or membership is
unique because the second map being compared is monic; in the first case
B is also monic since more generally £ monic implies g is even if &k isn’t.
The fact that inclusion is a special case of membership, and in the case of
points membership a special case of inclusion, of course plays havoc with
mid-century axiomatic set-theory but accords well with the naive set theory
and geometry which has survived since well before that. For example, we
obviously have (by composition in the comma category of “proofs”)

xeA&A%B =X€EBRB

and the resulting quantified implication

A§B=>Vx[x € A= x € B]

can be reversed (trivially since we can take x = i,); it can (less trivially) still
be reversed in a category like S€” even if we restrict the universal quantifier
in the hypothesis to range only over those x whose domains 7 € C. Thus
in particular a subgraph of X is determined by some of its edges and some
of its points, with the only constraint that both vertices of any selected edge
must be selected points. Now the claim that the five-edge graph Q classifies

true

subgraphs means that has a subgraph 1 — Q such that for any graph
X and any subgraph 4 -4+ X there is a unique morphism X %4 Q such
that i, is the inverse of true under ¢4 Thatis, forall T = X, x € A4 iff
@x = trueT, and the “characteristic” map ¢4 of i, is the only morphism with
this property. This uniquely determines £ up to isomorphism. In the case
SA” of reflexive graphs, Q is forced to be as claimed, with true the point at
which the non-degenerate loop also resides, for the following reason. Picture
the inclusion of 4 in X impressionistically as follows:

=i ok
I'I l’, V[‘ﬁ,l
o/w =Q
o~—"1

Of course all edges and points in A go by ¢ to the one true point, and all
points of X not in A must go to the other place “false”; but there may be
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edges of X which initiate or terminate in A but not conversely and they will
have to go to the appropriate arrow joining true and false since ¢ must be
homogeneous with respect to 9y, d,; there may well be paths between points
of A which are provided by X but not by 4, and they are forced to go by ¢
to the non-trivial loop at true. Thus all of Q is needed because of the variety
of inclusions that exist in $47. On the other hand, taking anything bigger
than Q would ruin the unigueness of ¢. Collapsing Q, for example Q — QF
the reflection into the category Y,, of graphs with no multiple edges, would
induce a closure operation on subgraphs, but could only classify certain ones,
in the case of Qf the “full” subgraphs.

Another “universal” property which happens to be true and interesting in
the SA" province is that there are enough morphisms X — Q to distinguish
edges, so that if F(X) denotes the abstract set F(X) = (X, Q) of subgraphs
of X and QF(X) the F(X)-fold cartesian product of copies of Q, then the
canonical morphism

X — QF)

X [p — ¢x]

is actually a subgraph ! (of course in a particular case a much smaller subset
S c F(X) may suffice).

In any category of the form S€” there is such a distinguished truth-value
object Qc¢, whose elements of sort C “are” just all the (S€” /C-isomorphism
types of) subactions of C; such is just any set of arrows B — C for various
B in C, subject only to the requirement that for any B/ — B in C, and
B — C in the set, we must also have the composite B’ — C in the set, in
other words, any “right ideal” of C in the case of a monoid. The action of C
on Q¢ is by inverse image (or “division” or “analysis”): If S is a right ideal
in C and if C' -% C, then

teSA iff AteS;

the requisite property S(Au) = (SA)u for C” 5 C! %, C then follows. The
object Q thus constructed to classify subactions of the C(—, C) then actually
succeeds to classify subactions of any X, for given a subobject A of X, we
can define ¢ by

tepx iff xteAd

T34 —5 1

Nl
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(where of course trueC = C(—,C) the greatest of all right ideals in ).
In other words, the truth-value gx of the statement “x € A” is identifieq
engineering-wise with the set of all possible acts ¢ which would bring aboyt
its actual truth. [This suggests a notion of numerical “measures” on the -
lattice ), whose theory is so far only fragmentarily developed.]

The functor §€” 2% g assigning to every C-set its abstract set of points
always has a left adjoint assigning to each set the corresponding discrete C-set
which has S elements of each sort and in which s = scA for all A for each
s € S, and each ' 4. CcincC. Composing these two adjoints we get (in
the case of graphs) the maximal discrete subgraph |[X| — X of any graph,

whose characteristic map X 4, Q factors through the loop C — Q. For

any morphism X R Y, the composite dy f classifies the subgraph D, of X
which is the degeneracy of f.

On the other hand the “points” functor S =% § will have a right

adjoint iff 1 e C; this assigns to any set S the codiscrete or chaotic action
whose figures of C-th sort are the elements of S(':¢). Thus for C = A,, the
chaotic graph on S points has S? edges.

To pass to another example, recall that we remarked before the elementary

“parallel process” E =| o e |is a reflexive graph which happens to admit

only one definition of composition making it into a category P. This also
happens to be a self-dual category in the sense that there exists an isomor-
phism P27 = P of categories. Its actions S®” are the irreflexive graphs (the
negative is in a way appropriate even for those objects which happen to have
loops at some point p, for morphisms are allowed to interchange any two
such loops). It has no sense here to speak of degenerating via a morphism
since P=|U 31| SP” where 0 C U C 1. Indeed the “points” 1 — X
should really be pictured here as LOOPS and the “nodes” U — X pictured
as dots. Our new I still has five subobjects in S?” but Q = Qp must be
pictured as

=9

There are three morphisms 1 — £ (i.e. loops in Q) since the terminal
object 1 itself (the generic loop now) has three subobjects. We can choose
either of the two loops at the one node as “true™; the node itself can’t be so
chosen since in any topos it can be shown that the generic subobject G — Q
must have a domain G = 1 (i.e. in this case a loop) and not for example
U C 1. The unique non-trivial automorphism of Q induces an involutory
modal “negation” operator on subobjects of any object X in S¥”, different
from the intuitionistic negation (which is also present) since it preserves false!
Since P has cancellation, the comma category S¥” /I~ S®/N™ is actually the
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actions of the poset

Uy —1
Ul/

which can usefully be considered as the basic open sets of a three-point topo-

logical space
®.0

in which one point is not open, making five open sets in all. The “quotient
map” S¥” /I — SP” identifies the two basic regions without thereby coalesc-
ing the actions of the corresponding restriction maps from the whole. Note
that discrete P sets are just disjoint sums of single loops, so that the analogue

(pullback) of the degeneracy D of a map X L. ¥isnota sub-object of X;
the fibers of |Y| — Y disconnect the multiple loops, and nodes which have
no loops are not covered at all.

Our three-element example A, could even more concretely be realized as
the full subcategory of Posets or of Cat consisting of (1 and) 2 in which case
we have the adjointness relations

0o 1149,

uniquely determining all by any one, and hence for any category A there is
a reflexive graph in Cat (rather than in S) in which the graph structure is
determined by adjointness A> 2 A. A more general kind of such “adjoint
graph” is
s 25

in which the initial set of any “edge” action X is its set of (rest) points,
the degenerate “edge” at any “point” S € § is the trivial action, and the
terminal set of any X is its set of components. In an example like C = A,,
every component contains a point, and the equivalence condition on pairs of
points of |X| induced by the surjection

| X| ——— X

l

7[0X

is also the one generated by the existence of two actors 4 € C taking one
element to the two points. Thus it is apparent from its picture that 7,Q = 1.

As another example we might consider the four element monoid F of all
endomaps of a two element set. The two inclusion functors A, &3 F show
that any F-set X may be viewed as a directed graph in two ways, with the
same set of points. The additional act T with 72 = 1; in F reverses each
edge of X to a canonically associated edge of X going the opposite way, and
this canonical return trip is preserved by morphisms X — Y. There are
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objects in which some non degenerate loops are fixed by 7, for example the
two element C’. This category SF"” has been extensively used to proving
nontrivial theorems about free groups on the basis of geometric intuition by
Serre, Bass, Gersten, Duskin, and others, though without ever yet exploiting
its topos structure! The connection is as follows: Since F — S is a fu]
subcategory of the category S of non empty finite sets, we get a full inclusion
SF” «, §5” by taking the right adjoint of the restriction (as well as another
full inclusion by taking the left adjoint; it is the left adjoint which extends
F — S with respect to the Yoneda embeddings 7¥, Ts, but the right adjoint
which is considered the more basic inclusion in sheaf theory). Ys — $5” is
the classical category of simplicial complexes, which explains the relation to
combinatorial topology. A third reflective subcategory of § $% is the category
G of groupoids, i.e. categories in which every morphism is an isomorphism,
and functors (= homomorphisms) between these; since 1 € S, there is a
codiscrete (chaotic) inclusion § — $5% right adjoint to “points” = (1,-) which
takes any set S to the action whose elements of sort » are just S”, forn €S
and where n' == 7 in S acts by composing 7' 4 n = S, Now if we
consider elements of (2, X) as arrows between the points (1, X), X already
suggests how to compose these via the elements a of (3, X), whose “boundary”
elements are deduced via inclusions 2 < 3 in S and might be pictured as

/1\
0O — 52

We consider “a = x, = xpx,” as a relation to be imposed on the free groupoid
generated by words from (2, X), for each a € (3, X), thus obtaining the
groupoid 7; X and the left adjoint

§5” I g
to the full inclusion which to each groupoid G associates the composable
strings of arrows from G. The latter is acted on by all maps n' %, » since
where A is not surjective, we can compose in G some segments of an n-string,
where it is not injective we can insert some identities into the string to bring
it up to length »', and where symbols are “interchanged” we can imagine
using the ( )~! operation of the groupoid. A more unified description of

the inclusion is obtained if we note that there is also a codiscrete inclusion
S — g, since if S(i,j) = 1 for all {i,/) in S?, there is a umque way to
def

compose these, and S is a groupoid with .S objects since S(i, ]) S( J Q)
just reverses. This restricts to S < § — §, which then induces § — §5”
immediately by (n, G) G(n, G); this is full since any homogeneous map

X L ¥ between such actions of S preserves (3,X) — (3,Y) which are
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essentially the multiplication tables of the original groupoids, hence f comes
from a homomorphism between the latter. The composites SF* — §57 — g
and Ys — $5” — G thus provide Poincaré groupoids for F-graphs and
simplicial schemes respectively. Lemmas showing how to spread out the
graphs thus giving rise to free groups lead to geometric proofs of theorems
of Schreier, Gersten, etc.

Besides Q¢, the other crucially topos-theoretic property of the presheaf
categories SC” is “cartesian closedness”, that is the existence of exponential
functors ( ) characterized by their (“A-conversion™) right adjointness to the
cartesian product functor 4 x () for each 4 € §€7:

X — Y4
Ax X —Y

The object Y4 can be constructed using this adjointness applied to the special
case X = C € C by invoking Yoneda’s lemma: the elements of the sort C in
Y4 “are” just the arbitrary morphisms 4 x C — Y, acted on by

AxC 12 4vc—vY for ' 5

[Somewhat more conceptually, these elements are the morphisms
C*A — C*Y in S€/C where C*X denotes the trivial fibration X x C — C.]
In the case of a monoid C with its single dominant sort I, the objects of the
form Y! (e.g. for Y =1 itself, or ¥ = Q¢) present themselves as the simplest

interesting cases for calculation: Y! has as elements the maps I x I Ly
satisfying

S(x4,12) = f(x,1)A
remembering that the elements of I are the elements of the original monoid
itself. The action of C on this set of maps is

(fA)(x,8) = f(x,1)

by acting only on the “test” component ¢, not on the one that is to be ex-
ponentiated. There is as yet no very systematic way of calculating even the
case I, which therefore must be done one C at a time. For example, if C is
the monoid of all continuous self maps of the unit interval [0, 1], so that the
points 1 — Iin S€” are the points of [0, 1] in the usual sense, then the maps
I x I —1 are just the usual continuous functions of two variables, which is
mildly surprising, but not too difficult to prove. The corresponding statement
for the monoid of smooth (= C*) self maps of the line is surprising (once
one realizes that one has to show that all the higher formally defined partial
derivatives are the actual partial derivatives so in particular commute) and
rather difficult to prove (Bowman 1966 and forthcoming book by Frolicher
and Kriegl). Having calculated Y, even more interest attaches to the natural
path functionals Y1 — Y. In both of the examples mentioned, the real line
R determines an object of S€” with just the reals as points by defining its
elements of sort I to be just the continuous (resp. smooth) paths in R. Since
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multiplication is continuous it gives rise to a morphism R x R — R in §C”
and hence to a left action R x R! — R! by (af)(x) = a(f(x)). Thus (in the
smooth case) one can look for the object of linear functionals

Ling(RR, R) — R

whose points are just the morphisms RR %, R which moreover satisfy

p(af) = ap(f). Schanuel, Zame, and I showed in 1980 that these are just
the Schwartz distributions (of compact support); see the forthcoming book
by Frolicher and Kriegl for details.

In the case C = A,, the reader should be able to compute that the elements
of I! are the six maps I x I — I which are the two constants, the two projec-
tions, and the maps corresponding to “max” and “min” (when we consider
that 0 < 1 in I) but that the action of A, on this set is such that its standard
picture as a graph is

G

= 2,

In an interpretation where I — X are thought of as processes, the following
names for the elements of I! are suggestive:

®
f stiw %ing

start e + ~ e finish
doing

The reader is invited to correlate these six names with the names 0, 1, proj,,
proj,, max, min. Computation of I — I, Q!, etc. is further invited.
For presheaf categories SC” there is the extremely important formula

SC )X = §(CIX)”

showing that all the “slice” or “comma” categories (relative to any C-set X)
are again presheaf categories. Here C/X is the category whose objects are
the figures of X and whose morphisms are the incidence relations: x' 2 x
where x' = x4, C' = C in C, and x (resp. x') is a figure in X of sort C
(resp. C'"). The forgetful functor C/X — C is what is called a (discrete op-)
fibration.

For one example of the kind of “cohesiveness” which might be expressible
by a directed graph X in § A” consider a paragraph in which there are sev-
eral concrete or abstract things talked about (and which are taken as points)
whereas each sentence (edge) has a subject and an object (represented by
the operations dy, 8,). Many intransitive verbs can be considered as reflex-
ive versions (loops) of transitive verbs, so that these too can be included in
such an analysis. Since the paragraph contains many sentences, which make
many interlocking statements about the things, a non-trivial graph structure
thus results. (The degenerate loop at each point b may be considered as
the sentence “b is b”, which is implicit in the paragraph.) A translation or



QUALITATIVE DISTINCTIONS 277

interpretation of one paragraph into another (perhaps in another language)
should at least be a morphism of graphs. But it should preserve more than
just the “subject of a sentence” and “object of a sentence” incidence relations,
and this can be partly expressed by passing to a category of the form SAY vV
where V is a fixed graph of “labels” or “values”. Frequently V is a graph that
consists entirely of loops; then for X — ¥V to be a graph morphism merely
means that every degenerate loop in X is mapped to a point of V. Thus for
example V could be a classification of verbs such as that into “state, activity,
achievement” verbs, including the single point “is”, and a paragraph X could
be given the structure of an $A" /¥ object by mapping each sentence to the
type of its principal verb (it might be reasonable to map some non-degenerate
sentences such as “x, resembles x,” into the point “is”); or tenses might also
be included in V. Then a translation X — Y would be required to preserve
the labeling of X and ¥ X ——Yy

that is, to be a morphism in $47/V. V

The special role of labeling graphs as objects in § AY /V where V has only
loops comes up very frequently. For example, if the edges in X are to be
interpreted as processes or as roads between towns and the labeling signifies
time or cost or distance, the only general requirement is that a trivial process
costs nothing, so ¥ could be taken as a set of vectors or real numbers or other
abstract quantities, all construed as loops at a single point, with the quantity
0 identified as the degenerate loop.

This special role of loops can be formalized as follows: There is a unique
surjective homomorphism of monoids A; — {0, 1} from our three-element
monoid to the multiplicative monoid consisting of the numbers 0, 1. (This is
what results if we “force A, to become commutative”.) The only significant
feature of the element O is that it is a generic idempotent, so the objects of
the category ${%'}” may be identified with diagrams of sets

XO é X ’ pi =id Xo
I
the action of 0 being the composite ip on X (one of the great many kinds
of examples of such a structure arises when we are given an arbitrary map-

ping Xo — X;, X = Xp x X, and [ is taken to be the inclusion of the
(<

“graph” of «). In this case the discrete inclusion § — S${%!}* not only has a
right adjoint “points” functor and a left adjoint “components” functor, but
these two functors are isomorphic, viz. to X — Xj; hence the components
functor trivially preserves products (indeed all limits) and there is trivially
a notion of “codiscrete” (which indeed coincides with “discrete”). However,
the truth-value object (o,,} is not connected since it has three elements and
two components. We will return to this remarkable topos (which in par-
ticular seems to be neither “gros” nor “petit”) in the third section, but for
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the moment let us return to its relationships with the topos S&" of reflexive
graphs.
The homomorphism A, 2 {0,1} induces (as does any functor) three
adjoint functors between presheaf categories
A%

S
a-g*q “l T"' l"‘

§{0.)%

p
where ¢g* simply reinterprets Xo &—, X asa graph with X; points and X loops,

the location of the loops being Sp,eciﬁed by p. This is the basic relationship
required for the kind of “labeling” applications mentioned above, and in
fact suggests considering the comma category (or “glued” topos) SAY /a* as
a category of labeled graphs in which morphisms include the possibility of
re-labeling. The right adjoint functor g. essentially discards all the non-loops
in an arbitrary graph, whereas the left adjoint ¢! forces all edges to become
loops by replacing the old set of points with the new set of points which is the
set of components of the original graph; the new set of edges is a quotient set
of the old in that all the degenerate loops in each given component become
identified.

P
How should one internally picture the objects Xo & X, pi = idy, of
i

${(0.1}"9 Probably there is no single preferred way, since objects so abstract
have many diverse applications; however, one way suggested (by Meloni) is
that the generic figure is

Loy =| _#~

so that in general every object of ${%!}” is a sum

KK

of connected components (the same number as the number of points !) while
each component (which is essentially nothing but a pointed set) is indicated
by drawing one small path (without endpoints) through the point for each
non degenerate element. Then the effect of the functor g* is to close up each
little path into a loop. There are more connections between the two toposes,
induced by the two obvious injective homomorphisms

{0,1} = A,
I

where ix(0) = ex (recall that 0 is a generic idempotent; of course ip, i; are
both sections of ¢g). Each of iy, i, induce three adjoint functors as g does; for
example i; redefines every edge in a graph as a loop at its beginning point.
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Although SAV is just one topos and the toposes SAY /B are still quite spe-
cial, it can be shown that for any Grothendieck topos X there exists a graph
B and an idempotent left-exact endofunctor E of S4 /B such that X is equi-
valent to the subcategory of SAY /B consisting of the objects fixed by E. As
an example, consider the topos $7(8)” of right actions of the free category (or
path category) determined by a reflexive graph B. This is equivalent to the
subcategory of SA&Y /B consisting of all X — B which satisfy the condition
of “fibration” type:

i.e. that for any edge S of B and any point x projecting to f8; there is

a unique edge X which projects to f and has X3; = x (then x - g = X0y
€
uniquely defines the “action” of f); and this implies that any edge X which

projects to a degenerate b is itself already degenerate (then in particular we
have a further derived “fibration” type condition

1 2. X

-1
4

L

/7

1t ., B
and each degenerate loop b acts as the identity). Under the equivalence

$AY /B = s@/B)”

this means that those morphisms in A,/B which are over either 1 2 Tor
I— 11in A, are being required to act as bijections between the fibers of X,
or again that what is really acting on X is the category of fractions

A/B— F(B)

obtained by formally inverting D(B), the inverse image under A,/B — A,
P _

of the subcategory D(1) =1 21 D¢, of A,. Every edge £ in B determines a
1

morphism in F(B), namely the one coming from

1—2 1
O'(ﬂ)= fx /
B
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in A,/B. But composites of these (hence longer words) can be formed ip
7(B), since from 5" -2+ b' £+ b in B we get in A, /B the solid arrows

b
A
_ 7
8 7 lr(ﬂ)
I,,
b ——
,,’1 a(B)
a //, lr(a)
b",—————» a
a(a)

where the “target” morphisms z( ) are well defined like the “source” mor-
phisms g( ), but using 9, instead of dp; but in F(B) the 7 arrows (with labe]
0,) are invertible, hence there are the dotted arrows, so in particular a well

defined 5" 22 b results in 7 (B). On the other hand, for any B there is a
unique nondegenerate morphism of graphs B— C =| ) |to the generic

loop (defined by the condition that the fiber be discrete, in other words, that
every nondegenerate edge of B be labeled by the nondegenerate loop of C).
Since ¥ is a functor

$&" L, cat

we thus get an induced functor #(B) — F(C) = N to the additive monoid
of natural numbers; this functor is the /ength function on the words in #(B)
(Caution: this length function, like B — C itself, is only functorial with
respect to nondegenerate morphisms B, — B;). For example a graph X
over the loop C =| ) |in §47/C satisfies our fibration condition if and
only if it is determined by an arbitrary endomap u of the fiber set Xy c X,
where the rest of edges in X are just the “graph” {{(uxg,Xp) | X0 € Xo} of u.
Note that usually the free category on B is construed as the skeletal (hence
equivalent) subcategory of 7(B) on the objects over 1 in A,.

For free categories 7(B) on reflexive graphs, something can occasionally
occur (and indeed does in some of our examples such as B = |«___e |) which

~—

can never occur for the often-studied free categories W(G) on an irreflexive
G : namely B — F(B) as graphs; of course B would have to be acyclic (i.e.
very loop-free) for this to happen.

Since the topos $¥(®” is determined as a subcategory of SAV /B via the
(epimorphic) functor A, /B L. 7 (B), the left-exact idempotent f* f. in this
case actually preserves even infinite limits, since indeed it has a left adjoint
f* fi (which is also idempotent)

f N
SA/B* ¢ A §¥ B fi4f 471,

N
4

f.
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Now any free category ¥(B) has the property that every morphism in it
is both monic and epic. Thus, (as will be explained further) $(B) = SFB™
(S

serves well as one notion of the “petit topos associated to the object B of the
topos B = SA"”.
ros o0 def | . . . .
Before closing this section, let us illustrate the difference between left ac-
tions S€ and right actions $€” in the case C = A,. In contrast to the infinitely

complicated graphs, such left A,, - sets or “cylinders”

dy
_

Ape—TL —4 Idy = 1d, =id,

_—
dy

(atleastin § 1) are all uniquely expressible as disjoint sums of the very special
ones in which 4y = 1; these connected cylinders, apart from the cardinality
of the fiber A, are determined up to isomorphism by whether or not the two
designated points dp, d, are distinct or not.

Note that our cylinders generalize the common notion of cylinders as prod-
ucts as follows: If 1 =3 I is any bipointed set (i.e. connected objects of $41)
and Ap is any set, then A = Ao x I is an object of SA' having the special

property that all components are isomorphic. Of course, cylinders in a topos
other than S can have highly non-trivial significance; for example when Ay
and A are “contractible” objects of the topos but do(Ap) Nd;(Ap) = 0 in A.
In general a C%? action R in S€ gives rise to an adjoint pair of contravariant
functors

( SC)op SC""
defined by Hom¢(—, ,R) and Homco, (—, R,); many of the basic algebra-geometry
dualities of mathematics

spectrum

Alg(C)°? Geom(C)

function alg

are just restrictions of exactly such an adjoint pair to subcategories of (S€)°?
and S€” respectively, with Geom(C) even being a subtopos defined by a
Grothendieck topology on C. A standard example of such R is R(C',C) =
C(C'", C), the “hom-functor” of C. However, in the case C = A, we could
even consider the trivial action on a set R; then any cylinder A yields a special
kind of graph
RA2 R4

which in the case of a connected cylinder (49 = 1) is just the graph whose
points are R, whose edges are all functions from A to R, and whose begin
and finish vertex relations are given by evaluation

Sf8o = f(do)

fo, = f(dy)
at the two points designated by the cylinder structure, for any f € R4.
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As I have mentioned “singularity” several times, it may have occured tq
the reader that there is an objective way of measuring it. Indeed for any
small category C, there is a distinguished object Eq = Egc in the topos
SC€” such that for every object X there is a canonical map X = Egq i
SC” which does this. Namely the elements of sort C of Eq are just all
the equivalence relations on C, where by an equivalence relation on C is
meant the specification for every D € C of a set of ordered pairs D =3 C
of morphisms in C which is reflexive, symmetric, and transitive for each D
and which is closed with respect to composition by arbitrary D' — D. If
C' — CinCand E € Eq(C), then E - 2 € Eq(C") is defined by taking for
each D

(t|,t2) eFE- -1+ (I.{.th/ltz) eFE

thus making Eg into an object of S€’. Of course it is more than just an
object, having a natural intersection operation Eg x Eq — Eg and greatest
point 1 — Eg making it into a semilattice object, so in particular into an
ordered object. On the other hand, although the equality relation Ac € Eq(C)
for each C this is not natural, i.e. does not define a point 1 -+ Eq unless
it happens that all morphisms in C are monomorphisms. The singularity
measurement X — Egq is defined, for each C = X, by

a(x) ={({t, 2) | xt) = xt2}
the “self-incidence”; then for C’ %, C we have
o(xd) = a(x)A

since (xA)t; = (xA)t, iff x(At;) = x(At,). The maps oy, although canonical,
are not natural when X is varied, that is

X—-~—-—>Y

N/

only commutes for “non-singular” f; of course
ox Cayo f

for all f, so we could say that o is natural in a suitable “2-categorical” sense.
Some f might be “equisingular” in the sense that there exists an endomor-
phism |f]| of Eq so that a square commutes. For example with C = A,, Eqc
.is the loop, and indeed in our generalization M(T) of A,, Egq itself is very
singular.

The reader may have also guessed that A, is the first of a sequence. The
monoid A; of all order-preserving endomaps of the three-element ordered
set (0,1,2) has ten elements, three of which (the constants) are points z
of the generic figure in that zA = z for all ten 1). The topos $A” may be
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considered to consist of triangulated surfaces, wherein the triangles may be
curled up or singular in other ways and are pasted together along edges or
vertices in every conceivable way. A product X x Y is the 2-skeleton of
the 4-dimensional object which one might imagine. The generic triangle has
nineteen subobjects, so that the “nineteen values of superficial truth” €, form
both a Heyting algebra and compatibly a triangulated surface in which only
two of the singular triangles are degenerated all the way to points. If X is any
such triangulated surface and S ¢ X any subsurface while x is any triangle of
X, the statement “x € .S” thus has nineteen possible degrees of being false.
After having built a model of the surface €2, the reader might like to try

Q...

II1. I now will discuss three sequences of examples, assigning to each set
T a topos SM(T” which will be gros for T > 2 and petit toposes $UT”,
SP(T”  Moreover SUM” and SPM” will turn out to be but two instances
of a whole system St(B) of petit toposes attached to objects B of SM(T™
namely those arising from the special choices B = By and B = Bp. I will
also point out some striking differences between even these simple $M(T”
for T =1 versus T = 2 versus T > 2 versus T = oco. (It is surely relevant
that many languages have four distinct “numbers™: keine, eine, beide, viele.)

The category U(T) is simply the poset with 7" + 1 elements, in which the
added element is greater than all the elements of 7" and there are no other
order relations. This poset indexes a basis of open sets in the topological space
which has T isolated points and one “focal” point (whose only neighborhood
is the whole space). The presheaf category SYT)” is then the category of
sheaves on this space, for to specify a sheaf X is merely to specify a set of
global sections X (1), a set X(U;) of sections over each basic open U, and
restriction maps X (1) — X(U,) for each ¢t € T. The sheaf condition in this
simple case only applies to non-basic open sets

Us=JU forScT
1€8

and then merely forces us to define

X(US) = HXI
1€S

since U,y N U, = 0 for ¢, # 1,; this is the same answer we get if we consider
that Us < 1 is a subobject of the terminal object 1 of SY(T)” and define
X(Us) to be the set of (natural, homogeneous) maps Us — X in SUM™,
Everyone seems to agree that toposes constructed in this way from a poset
are petit.

On the other hand, the category P(T'), abstracting one simple idea of T
parallel processes, is not a poset (unless 7 < 1): I define it to have only two
objects U and I but 7" morphisms from U to I and no other non-identity
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morphisms. Thus, via the Yoneda-Grothendieck-Cayley-Dedekind embeg-
ding, the topos S®(T)” has a full subcategory

P
U—— 1.

<
(T arrows)
Figures of type U — X may be called the nodes of X and figures of type
1 — X T-gons, so that every T-gon in X has a t-th vertex node for each
t in T (some of which may coincide); X is entirely specified by its set of
nodes, its set of 7-gons, and the #-th vertex relation to each . For example,
if T = 2, P(2) = P previously alluded to and SP®” consists of irreflexive
graphs, wherein 2-gons are usually called edges and the two kinds of vertices
are usually thought of as initial and terminal. Note that the points 1 — X
in SH(M” are exactly the T-gons x whose -th vertex xt = the same node for
all t € T, i.e. generalized “loops”.
Special interest attaches to the comma category at 1

SPM” /] ST/
since we can calculate that
P(T)/1=U(T)
which is a poset ! The forgetful P(7)/I — P(T) is just the obvious

TS
Uﬁ‘l

;—f’.’//l R

[T
v

Now for any object I in any topos &, there is a geometric morphism
£/1 =+ £, where the m correctly suggests both “projection” (from a total
space to a base) and “product” (internal relative product = object of sections
of any E — I). = is just the right adjoint of the obvious functor which
assigns
F x1
I'F=F = l o
1= proj
|

to any F in £. Such a morphism £/I — €& is often considered to be a
“local homeomorphism” since its inverse image functor ( ); preserves all
the internal higher-order logic of £:

(X xY)1 = X; x Y; =product in £/1
(Y4); = ¥ = function space in the sense of £/I
Qp = the truth-value object of £/1 etc.

If moreover the object I is a covering of the topos £ in the sense that the
unique map I — 1 is an epimorphism of £, then £/I — £ has the property
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of being “conservative”, i.e. f is a monomorphism in £ iff £ is a monomor-
phism in £/1, f is a epimorphism in £ iff /i is an epimorphism in £ /1, etc.
Then one says that a topos £ “locally” has a certain property if there exists a
covering I — 1 of £ such that £ /I actually has the property. It seems emi-
nently reasonable that a topos which is locally petit should also be considered
petit; at least, this seems to be implicit in Grothendieck’s concept of étendue
(which he now calls topological multiplicity): this refers to any topos £ which
is locally a subtopos of a presheaf topos $U” where U is some poset. If C
is any category in which every morphism is a monomorphism (for example
any monoid satisfying the cancellation law ax = ay = x = y), then S is
an étendue, since it is locally presheaves on the poset C/ZC.

It is obvious that every morphism in P(7T) is a monomorphism, since there
are no non-trivial composites ax = ay to check, and anyway we have al-
ready constructed the surjective local homeomorphism U(7) — P(T") from
a poset. Thus we are justified in considering that S®T” js petit. On the
other hand, it is not gros, for although the components functor S¥N” —, §
takes Qr to 1 for T > 2, for the same T’s it fails to preserve finite products.

The generic node U in S¥T” is not a covering, since in fact it is the unique
non-trivial one among the three subobjects of 1 (thus 1 has three generalized
“loops” 1 — Qr); SEM” /U = § since if X — U then (I,X) = 0 for
(I, U) = 0; thus X consists only of nodes U — X, each of which is a
section of X — U; the map X — U is unique if it exists since U — 1;
therefore X = § x U where S = (U, X) is considered discrete. In particular
the restriction of the object I to this open subtopos § = SHTM™ /7 — BT
is the set 77 in other words U x I = T x U with T considered discrete.

For the object I of S®(T” we have I>? =1+ (T2 —T) x U, where T2 — T
is considered as a discrete object; for (U,1%) = (U,I)2 = T2 is the number of
nodes of 12, whereas (I,12) = (I,LI)2 = 12 = 1 is the number of Tgons of 12,
and this unique element must be the diagonal I — I?> which is nonsingular
and hence have T distinct nodes, leaving 72— T bare nodes in I>. Combining
the above quadratic equation with the two equations U2 = U, Ux1=TxU
we get a presentation of a small but significant part of the Burnside half-
ring of the topos SP(T”; significant because it generates the whole topos
with the help of colimits, small because using only the half-ring operations,
Iand U don’t generate any very complicated objects. This sub-half-ring has
a very simple description after tensoring with the rationals Q or even with
Z[1/T?—T], i.e. after adjoining negatives and sufficiently many denominators
(here we assume 7" > 1 is finite, and treat 72— T as the natural number which
is its cardinality): For let x denote the element of this rationalized Burnside
ring which corresponds to the generic figure I, and similarly let # correspond
to the generic node U; then the quadratic equation implies that the generic
node can be expressed in terms of the generic figure

u=(x*—x)/(T>-T)
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so that the subring in question is in fact generated (over the scalarg
Z[1/T? — T] by the single element x. However x satisfies the relations
xu = Tu where T is a whole number and also ¥? = u. Writing out the
first of these we get

X3=(0+T)x*-Tx

and hence x* = (1 + T + T?)x? — (1 + T)Tx. Then by multiplying out 2 in
terms of x we find that the second relation u? = u actually follows from the
first. On the other hand the cubic equation actually factors as

x(x—-1)(x-T)=0

Thus we have proved that

THEOREM. The subring of the rationalized Burnside ring of ST which
is generated by the Yoneda embedding is actually the ring of functions on the
three-point spectrum (0,1, T) C Z.

This information helps to determine the points of the topos, § — SH(M”
whose inverse image functors are required to be left exact and cocontinuous,
and hence correspond to left actions of the category P(T) which are “flat™
namely the latter can only have the three possible cardinalities (for their set of
“quantities” of type I) 0, 1, 7. It would be interesting to find such an algebraic
presentation of a portion including Q of the (rationalized) Burnside ring of
SBT™,

By M(T) I will mean the monoid which has 7 + 1 elements, the added
element being the identity element, with the multiplication law

teT,seMT).

Not only are all elements of M(T) idempotent, but any pair of elements
satisfies the following identity

afa=af |

Such “graphic” monoids are relevant to the study of lists without repetitions
and to “check-in” actions: if M is any graphic monoid and X is any right
action of M on a set of states, then when o checks in, it may change the state,
but if he tries later to check in a second time it is surely irrelevant. Not all
graphic monoids M are of the simple form M(T), but there is a structure

theorem for them saying that if we force commutativity M — S we get a
sup-semilattice with a support function

(a(1) =0,0(ap) = a(a) Ua(B))

with the property that if we consider 7, = {a|g(a) = a}, the set of all
elements with support equal to given a € S, then we get a homomorphic
inclusion M(7,) — M for a # 0. Thus it is tempting to recast the structure
theory in topos-theoretic terms by replacing the base topos § by another one
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constructed using the semilattice S, but I have not yet had time to work this
out.

The idea to consider M(T") was reinforced by a remark of Professor Jorge
Gracia in a discussion of the philosophical part/whole relation: the mere
idea that T points cohere into a single whole could be considered totally
abstractly as just another element adjoined to the abstract set 7. Then much
more complex wholes could be analyzed as being made of overlapping parts
(possibly singular) of this simple kind. For example the idea of connecting
two points (7' = 2) may be expressed by the three element figure [e — o],
In a complex graph X, a given pair of points 2 — X (where2=1+1lisin
itself discrete) may or may not be connectable

[o o]—[o— 0]

€ ——

X

and if they are connectable it may be possible in many ways. So it is also
for arbitrary 7. Note that (because of the draconian multiplication table),
1 € M(T), and indeed M(T), the category obtained from the monoid by
splitting idempotents, is equivalent to a category with only two objects, the
terminal object and the one represented by the unique object of the monoid:

I

All endomaps of I except the identity 1; are constant; in other words, (for
example M(2) = A, as discussed in section II): The discrete object

T=2x1
T

is a subobject T c I in SM(T)” which contains all points of I, but which is
very different from I, for it lacks the breath of cohesiveness which I has and
which makes all the difference although this restrictive method temporarily
neglects further analysis of this unity. For any object X of SM(M” and any
T-indexed family of points 1 =~ X of X there is (by the universal mapping
property of ¥) a single morphism 7" —— X and hence a set (possibly empty)
of (possibly singular) I-figures X

T C

x|

P =
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in X whose vertices agree X-¢ = X; for all ¢ with the given points. The resulting
myriads of incidence relations are preserved by any morphism X — Y.
By looking at the subobjects of Iin SM(T)” we see that there are precisely

2T 4+ 1

truth-values in the object Qr. The Heyting algebra thus resulting is also
“simplest possible” in that the Boolean property

A="14

is violated for precisely one A, namely A = T, for 71117 =1 > T, while it
holds for A=1orforany A C T with A # T.

For any T the components functor (left adjoint to the discrete inclusion)
SM(N” __, ¢ may be computed as the reflexive coequalizer

(T2 x I X) =3 (1, X) — mo(X)

and hence preserves finite cartesian products. For 7 > 1, there is a pair
1 = I of morphisms with empty intersection, thus (as was pointed out by
Grothendieck), if we consider the map I — Q corresponding to one of them
(which maps it to true), the others are mapped to false; this has the effect
that all non-zero elements of Q can be connected (by the action of M(T) on
Q, which is by inverse image) to zero and hence that 7p(2) = 1. For any
T, the points functor SM(T” _, § has the right adjoint sending any set S
to ST, providing a notion of chaotic object opposite to discrete. Thus for
T > 1, SM(M” satisfies three of the distinctive properties of a “gros” topos.

For T = 1, M(T) = {0, 1} the multiplicative monoid with one idempotent
0 # 1. We have that Q has 2! + 1 = 3 elements, but M(1) lacks sufficient
action to connect 7', I with 0, hence 7(Q) = 2. Thus it seems that SM()” jg
not gros. Probably it is not petit either; at least the M(1)/1I construction fails
to produce a poset.

What possible use could the categories SM(T)” for T > 2 have? As a
theory of triangulated surfaces, SM(®” seems much poorer than the category
§AY discussed briefly in section II, since the six non-constant, non-identity
operators in A, permit explicit calculation of the incidences of the boundaries
of the triangles, not just of the vertices as here.

If T is a countably infinite set with a distinguished point co, then we can
define a functor

top —s SMM”

from the category of topological spaces and continuous maps, by using the
distinguished point as follows: we topologize T by making every ¢ # co an
open point and by making every cofinite subset containing co into a neigh-
borhood of oo resulting in a space denoted T,. Then for any space X, the set
top(7T ', X) of continuous maps 7T, —+ X is the set of convergent sequences
in X, which has the obvious action of M(7") defined by x - t = the constant
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sequence which is constantly equal to the ¢-th term of the sequence x; in
particular

Xoo = lim x; |.
1#00
Clearly
tOp top(Too,—) SM(T)op
points points
S

commutes, so that in particular our functor is faithful and for an object of
SM(T)™ coming from top, the above limit condition is necessary and sufficient
for a morphism x from the discrete 7" to extend to a (unique) cohesive figure

T c 1

4
L4
Vd

X '3

That is, cohesive means convergent for such objects. If we restrict our func-
tor to the subcategory top,, of sequentially determined spaces (which includes
all metrizable spaces) our functor (which in any case preserves products and
equalizers) becomes full; this is due to the fact that preservation of con-
vergent sequences is sufficient to determine continuity in top,, whereas the
naturality/homogeneity of the maps in SM(T)” means precisely that conver-
gent sequences are mapped to convergent sequence, preserving the evaluation
at each t. The inclusion top,, — SM(T)” has a left adjoint, and preserves the
function space construction (which exists in top,, too). Thus we are justified
in considering top,, as a full subcategory of SM(T” (of course for a different
choice of co € T we would get a different subcategory). Note that I is not in
the subcategory; the space T, determines a much bigger object

T—1— Ty

(all with the same points) but of course for each X in $M(T)” which comes
from a space, every I — X uniquely extends to 7, — X. The Sierpinski
space 2 (two points, three open sets) determines a Heyting algebra object
O = top(Two, 2) of SM(T™ with a morphism O — Q given by restricting from
To to I; this suggests considering OX as the “object of opens” for any object
X of SM(M” However, we are not completely free to use SM(1)” (with its
super-simple definition) as a replacement (improvement in that it is a topos)
for top,,, because topological sums are not preserved by the embedding: there
is the comparison map

t0P(T o0, Xi) + 10D (Teo, X2) — t0P(Teo, X1 + X2)

(which is bijective on points) in the topos, but the “convergent sequences”
in the presheaf-sum are either completely in one summand or completely in
the other, whereas in the top,-sum on the right a convergent sequence may
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bounce back and forth any finite number of times before finally settling into
either X; or X, where its limit is.

The fact that cohesiveness in SM(T™ (for T countably infinite) is not nec-
essarily of the “limit” kind is illustrated by a completely different cartesian-
closed full reflective subcategory bor,, obtained as follows. Bornological sets
are usually defined to consist of a family of “bounded” subsets of a given set
of points, subject to the axioms that all singletons are bounded, any subset of
a bounded set is bounded, and the union of any finite collection of bounded
sets is bounded. A morphism from one bornological set to another is any
mapping of points for which the image of any bounded set in the domain is
bounded in the codomain. Thus we get a (cartesian closed) category bor. A
bornological set is discrete iff only the finite subsets are bounded, the opposite
of “chaotic” in which all subsets are bounded; the structure of a bornological
set is determined by knowing the chaotic figures in it. This seems to be a
very loose structure, but in combination with algebraic structure it is quite
important in functional analysis, where its covariant nature is much easier
to deal with than the contrary “open set” determination: for example, the
category ab(bor) of bornological abelian groups contains the usual categories
of Frechet nuclear spaces, Banach spaces, etc. with continuous linear maps as
full subcategories. Let T}, be the codiscrete bornological set with 7 points.

Then
bor bor(Thor—) S M(T)°"

again preserves the natural point functors on both categories and has a left
adjoint. If bor, is defined as the subcategory of those bornological sets for
which any subset is bounded provided every countable subset of it is bounded,
then the restriction of our functor to bor, is again full and has many good
properties, but again fails to preserve sums. We get a disparate big enlarge-
ment of I with the same points

_ Tbor

T c1
S o

in SM(M”" such that (Tyor, X) — (I, X) is a bijection for bornological ob-

jects X. This is the largest extension I ¢ E of I which has the same points
T = (1,I) = (1,E) and which is separated by 1 in the sense that for any

S/
13 E, f = g provided the induced mappings (1,I) = (1, E) are equal, i.e.

g
VieT[ft=gtl=> f=g,ie E € Ymr).

It is even possible to get embeddings of topological categories into SM(T)”
which do preserve sums, provided we take T to be the power of the continuum
and imagine it topologized as an interval or as a circle, since either of the
latter is a connected space. For then

tOP(Tcls: Z Xi) “ Z top(Tos, Xi)
i i
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n SM(M” Thus a cohesive figure is now interpreted to mean a continuous
path, or a continuous loop, etc., depending on the meaning fixed for Ty; the
embedding will be full when restricted to locally arcwise-connected spaces.
Such is the unexpected power of the action of constant maps.

Returning to the finite, let us consider briefly some of the remarkable
properties of the apparently simple topos SM(D” = §{0.1}* consisting of sets
operated on by a single idempotent. Even though it is not gros, it is connected
to any of our SM(M" through the homomorphism M(T) — {0, 1} which
collapses all T to 0, as well as by its T different sections {0,1} — M(T).
Restriction along the latter ones, and the left and right adjoints to restriction
along the former one thus yield T + 2 functors SM(T” ., §{0.1}* which
may provide useful invariants for classifying the objects of SM(T)” especially
since most of these functors preserve both sums and products; especially
for graphs (T = 2) one is always thirsty for systematic information. These
invariants may be construed as quantitative in the Galileo-Cantor-Burnside-
Grothendieck spirit as follows: recall that every X in ${%1}” is uniquely
expressible as a sum of connected components and that a connected object is
just a pointed set. If we let B, denote a standard pointed set with » elements,
and X (n) denote the abstract set of components of type B,, then we can write

Xzz:X(n)xB,,

(Incidentally ), X (n) is the set of points of X, since B, has a unique point).
Now, since
B x By = Buxem

we can compute cartesian products in terms of the above expansion as fol-
lows, using the fact that any topos is a distributive category:

XxY= (Zi’(n) XB,,) X (Z Y(m) XBm)
_ZZX(H)X Y(I?'Z)X(BnXBm)
_Z[ Z X(n) x Y(m)] x

nxm=gq

This is just the rule for multiplying formal Dirichlet series, which are usually
written with B, replaced by 1/(n)* where 1/( )® is a formal character of the
situation but for which one sometimes succeeds in evaluating X(s) for some
complex numbers s provided the coefficients X (n) comply. Now when the sets
X (n) are finite, and non-zero only for finite 7, we can via cardinality interpret
the coefficients as whole numbers. This gives an explicit determination of
the Burnside ring R(1) of the topos SM(” which is defined to consist of
all isomorphism types of objects satisfying the stated finiteness conditions,
added and multiplied by categorical coproduct and product, with differences
formally adjoined. (One of the main reasons for the finiteness conditions is to
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ensure that these “virtual” differences do not by their introduction produce
collapse.) The Burnside rings were originally found useful in the case §¢
of the topos of permutation representations of a group G. The T + 1 ring
homomorphisms and one linear operator

R(T) = R(1)

thus assign to each X € SM(T” (for example each graph when T = 2) a system
of “{-functions” in the ring of formal Dirichlet series with Z coefficients. The
classical Riemann (-function corresponds to the unique object of §{0.1}*
which has exactly one component B, of size n for every finite .

To study a little more closely the differences between the toposes $M(T)”
for various T, consider the problem of computing the function space I!, where
I is the regular right representation. In general there is 1 — I, the name of
the identity map I — 1, and also a map I — I!, the inclusion of constants
coming as a special case of the ¥ — ¥! induced by the unique I — 1.
Putting these two together we have the map

1+1— 1,

as for any object in any topos. This map is sometimes an isomorphism, but
certainly not in SM®” = §AV where from our computation in section II, we
see that 1 + I — I! is the map whose internal picture is

- =K<

(The reader may wish as an exercise to compute the characteristic map
I — Q to the five-edge truth-value object for this inclusion.) On the other
hand, for 7 > 2, the map 1 + I — I! is an isomorphism in SM(”: that

is, all maps I x I R I, (in other words all functions of two variables on the
monoid to itself satisfying f(ut,vt) = f(u,v)t ) are of a very simple form,
as Steve Schanuel showed me.

Now 1 + x is a very simple polynomial, and we have said that for 7 > 2
the exponential I! is in fact that polynomial applied to I. On the other hand
in the category of graphs with 7 = 2, we have

SN

o — @

which is manifestly neither a sum nor a product and hence not any polynomial
function of 1.

THEOREM. For any T # 2, there is a polynomial ®1 with N coefficients
such that for the representable object 1 € SM(T)” one has

I' = ®,(1)
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In fact ®(x) =1+ x forall T > 2, whereas ®y =1 and
®,(x) = 2x>.

To understand this further surprise from ${%1}” note that for any con-
nected B,, B! has (like any object) as many components as points, but its
points correspond to morphisms I — B,, which are n in number. The
number of general elements I — B} in Bl is the same as the number of
morphisms I> — Bj,, so we need to consider I2; it has just one point, but
(I,I?) = (I,1)2 = 22 = 4 elements, so I = B4. A map B; — ? must map the
point to a point but can map the other three elements arbitrarily. Hence B}
has »3 elements, 73 — n of which are non-degenerate. If we could determine
the apportionment of these 73 — n elements among the » components, we
could essentially compute Y! for any Y, since I is so strongly connected that

Y'=()_¥(n) x B,)' = > ¥(n)x B}

This apportionment for » a power of 2 follows from the case B, = 1. To
determine how the 23 — 2 = 6 nondegenerate elements of I! are apportioned
among the two components, recall that the right action of 7 on these elements

in their 12 L I guise is by multiplying on the left only in the first variable

(f1)(s, x) = f(ts,x).
Hence for T = {0} we get

(f-0

(1,1) = f(0,1)
(f-0)(1,0)

(LO =f(0$0)
(f0(0a1)=f(0a1)
(f-0)(0,0) = f(0,0)

Thus, for any I? 7, 1, f- 0 factors across the second projection I2 — 1,
so is a point of I'. The second projection itself corresponds to the point 1
of I, whereas the constantly 0 map 1> — I corresponds to the point 0 of
I!. Further consideration of cases shows that among the six f which do not
factor across the second projection, three of them have f-0 = 1 and three of
them have f-0 = 0. Hence the two components are of equal size B4 = I2.
In other words I' = 212, as was to be shown.

[The exceptional behavior of SM(T)” in the special case 7 = 1 may per-
haps be explained by noting that since the monoid {0, 1} is commutative, we
could equally well consider it to be one of the sequence SM(T) of toposes of
left actions, i.e. of “cylinders” which have T preferred sections instead of just
two. All of these toposes (for T # 0) have three truth values Q with two com-
ponents, and all of them in fact have the components functor representable.
The representing object for mg is T, the (connected this time) subobject of the
generic object, which itself has no non-empty subobjects: moAd = SM(T)(T, 4)

PRe g S e
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for all objects 4, so in particular T" has only the identity endomorphism (g
opposed to T in the case of right actions). The connected objects of $M(T)
are parameterized by the category 7'/S of T-pointed sets, and are hence de.
termined by the cardinality (of the set of figures, not “points”) together with
an equivalence relation on 7. The Burnside ring is thus the tensor product
of the formal Dirichlet series with the formal monoid ring of the monoid of
all equivalence relations on 7 with intersection of equivalence relations ag
multiplication. The object A for 4 the generic object can be computed by
a formula generalizing that for the case 7 = 1.]

The Theorem has the consequence that (for T # 0), the object I is con-
tractible in SMT” iff T = 2.

Now it remains to discuss the relation between the gros toposes SM(T)” (for
T > 2) and the two sequences SUT)” — SPT)” of petit toposes (actually
étendue in these cases). I will do this by attaching to each object of the
gros topos an associated petit topos by a reduction of the associated “comma
category” or discrete fibration. That is, for suitable C, (which if “big” enough
will give a gros S€”) we will show that

Scap————--—> Cat

: () J\ gt 1°?
+

Catmo;%——) Catreq

in other words that the reduction C/B of C/B for any B € SC” actually is
a category whose topos of right actions is guaranteed to be petit, since C/B

itself consists entirely of monomorphisms. For every B, R B, in $€”, the
resulting map of petit toposes is automatically “essential”, that is we will
always have the left Kan quantifier fi as well as the inverse image f* and the
right Kan quantifier f..

The meaning of “reduced” categories which will turn out to suffice for our

limited purpose is

ceQC&et=e=>e=1
in other words there are no idempotents (except identities). Since most of
our examples C consist “mainly” of idempotents and become C/B with the
same feature, reducing C/B to 6/\3 by collapsing the idempotents records
principally the “change” in the “becoming”.

Like any class of categories closed under arbitrary product and arbitrary
subcategories, the inclusion Cat,.q «— Cat has a left adjoint with surjective
adjunction functors

C—C

which in this case are bijective on objects so determined by a categorical
congruence relation, i.e. an equivalence relation on each set C(C’, C), stable
under composition. In our case the equivalence relation starts off being gen-
erated by all pairs {e;,e,) € C(C, C) for which both e, e, are idempotents.
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This indicates the meaning of my reduction process (). It may be noted
that C may also be described as the result of formally inverting all split epi-
morphisms (i.e. all p for which there exists a section s, ps = id) in case all
idempotents split in C. (In any case, this particular “fraction” construction,
unlike most gives a surjective functor C —» é). The reduction preserves
finite products of categories.

Of course very strong conditions on C are required in order to conclude
that all maps become monomorphisms in C. Since I don’t know a very
explicit description in general of the congruence relation involved in C — E,
1 will need very strong conditions indeed. It would be very convenient (also
in other applications such as simplicial sets) if one knew what conditions (if
any) must be added to

“Every map in C can be factored as a split epimorphism fol-
lowed by a monomorphism™

in order to conclude that every map in Cisa monomorphism; this comes
down to whether C —b C preserves monomorphisms, since certainly any
map in C is isomorphic to one of the form [/], the congruence class of a map
i which is a monomorphism in C.

The condition in quotation marks above was carefully chosen to be stable
under the passage from C to C/B where B is any object of § C” or equiva-
lently to be stable under the passage from C to a category E — C discretely
fibered over C; this stability would not hold if for example we had required the
monomorphism to be split (i.e. admit retractions). Such stability smoothes
our work, since anything proved for all C in a stable class can then be applied
to all C/B for some C of particular interest. Since here we are interested in
proving something about 6/\3, this means that we can concentrate on study-
ing the reduction process without at the same time combining that with a
study of the particular “comma category” construction.

The stable class on which I will concentrate is the restricted one of “nodal”
categories. By this I will mean any category C in which there exists some class
P of objects such that

I.C:ptP&P€P=>p=q; .
q

2. Every map with codomain in P has a section;

3. Every map which does not have a section factors through P.
It is then clear that every map in a nodal category can be factored as a
split epimorphism followed by a monomorphism, since indeed any map with
domain in P is (almost vacuously) a monomorphism. But this has been
achieved in a very extreme way, since in fact

ProrosITION. In a category C nodal with respect to P, every map is either
an isomorphism or a P-constant (in the sense of belonging to the bi-ideal of
maps which factor through P ).
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For if p is not P-constant, it has a section s; if s itself has a section, then
that section is p and p is an isomorphism; alternatively s is P-constant and
so s = ig where g has a section ¢ because the codomain of g is in P, but on
the other hand ¢ is a monomorphism since s is, so tg = 1. This shows that
in the latter alternative the codomain of p is isomorphic to a P-object, hence
p itself is P-constant. R

Thus for a nodal category there is a third description of C — C: invert
all maps which are both P-constant and split epimorphisms. This smaller
class of denominators may be thought of as “P-degeneracies”. Note that all
P-constant maps f really are constant in the sense that fx, = fx, whenever
defined. Note also that if C — P, and C — P, are two degeneracies of the
same C, then P; ~ P,, that is that to a “degenerate object” there corresponds
an essentially unique “P-point™.

For example the idempotent closure of the monoid of affine linear func-
tions ax + b : R — R is a nodal category.

A much smaller class which includes most of our examples are those nodal
categories in which every non-identity map is P-constant for a suitable P.
This remark should reinforce the reader’s suspicion that much of the ex-
plicit part of this article may deserve the title “the theory of constant maps”.
However, the actions of constant maps apparently are not quite so trivial as
might appear at first, somewhat as in continuum mechanics the “freezes” in
configuration space often accompany serious activity in the state space. The
category A, = M(2), involved in reflexive directed graphs belongs to this sub-
class of the nodal categories, but F, where F is the monoid of endomaps of
a two-element set, is nodal though it has non-identity isomorphisms.

ProposiTION. If C is nodal and B € S€”, then C/B is also nodal.

Proor. Let Pg be the class of all objects of C/B whose image under the
forgetful “domain” functor C/B — C is in P, where P is chosen so that C
is P-nodal. Then Pp surely has the property 1) of nodality. (Note that many
more objects of C/B, namely those which are non-singular figures of B, will
also have property 1); the letter P was chosen because in case C = M(T') with
P = (1), Pg is the subcategory of points of B). As for property 2), it follows
from the much more general fact that for any C, if a map C/B lies over a split
epimorphism in C, then it is split in C/B by the “same” map. Property 3)
is equally easy to lift: a map in C/B which is not an isomorphism factors in
C through P, but this immediately constructs an object in Pg through which
both portions of the factorization continue to live in C/B.

Thus to achieve our present goal it suffices to prove

THEOREM. IfC is a nodal category then every morphism in C is a monomor-
phism.

But in fact that is true for a vacuous reason: Every non-isomorphism in c
has domain P in P, and in fact also has codomain not in P, since any map
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between objects of P is already an isomorphism in C. But any two maps
C =% P were already equal in C, so certainly in f',', so any map with domain
P is a monomorphism, even in C.

Now in applying the above to our two object example M(T'), note that the
objects of the category M(T)/B are of two kinds, points Pg and “stars”, and
that for any star there are 7" maps to it from points expressing the vertex
relations; but there are also, for the degenerate stars maps with label I degen-
erating them to actual vertices, with the resulting 7" idempotents from each
degenerate star to itself, and it is these latter which collapse to identities in
(M(T)/B)".

Since the degenerate stars have been now identified with their associated
points and hence may be omitted, up to equivalence the latter category may
thus be pictured in two levels with all maps going down and in particular no
non-identity maps to any point

Points

Nondegenerate stars
This category will itself be a poset if every star is non-singular, and in any
case is “locally” a poset as required.
Now for given T, let By be the object I of SM(T)”, Then there is just one
star, and it is non-singular, so

(M(T)/Bu)" = U(T)

On the other hand, let Bp be the right M(7)-set which has just one star and
also just one point, so that every ¢t € T must act the same; in other words the
star is completely singular but not degenerate (so Bp = the generic loop in
the case T = 2 of reflexive graphs). Then

(M(T)/Be)" = P(T)

the “parallel process”. In the case T = 2, this means that irreflexive graphs
may be identified with reflexive graphs equipped with a map with discrete
fiber to the loop.

Thus we have shown that for each T, each of the petit toposes SU(T™,
SP(™ are but two examples, corresponding to two particular objects B of
the gros topos SM(T”_ of a family of petit toposes associated to all the objects
B. Each such petit topos is actually equivalent to a subcategory

SM(T)""/B ,__T_’.__: S(B)

which is both reflective and coreflective, with the reflection being just the

left Kan extension of M(7T')/B — (M(T')/B)". Which subcategory is it? In
general if C — D is surjective or a fraction construction, then $§€” « §P” is
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the subcategory in which D-identified actors in C act the same or D-inverted
actors in C act bijectively. Since in our example P = {1} and P is the inverse
image in M(7')/B, the condition that X — B, an object of SM(1” /B belong
to S(B) is just that it be “orthogonal” to I — 1.

I — X

P

|
,/
1"—— B
in other words, that the fibers be discrete.

We could invert still more maps, for example those labeled by a fixed
subset of T (as we did in the case T = 2 to obtain the free categories 7) to
obtain a finer notion of the petit topos associated to the objects B. Further,
there is sometimes a Grothendieck topology functorially associated to the
objects B, giving a system of petit sheaf toposes. For example if our gros
determiner is C = M(2)/C where C is the loop, and hence the B’s are the
simplest kind of /abeled graph, we can define a notion of covering in 7(B)
by declaring that all maps of positive label are coverings. (Here we picture

the basic label values as C = OO+ .) The resulting notion of petit

topos assigns to each C-labeled graph B a generalized Jonsson-Tarski topos

sh(B), the original example of the latter arising from B = 1:‘)) , two loops

with the non-degenerate labeling. Every such sh(B) is an étendue locally
homeomorphic to a generalized Cantor space X (B).

Finally, why should one be interested in petit toposes when we may as well
study X — B without the above restriction, and gros toposes seem to do
better at englobing the study of geometrical objects? One reason is that we
often want to consider actions as processes. Once a process [ is specified, its

parts must have been specified too. Thus if Xj Iox ) can be factored into
stages

Xo % e 3o I X,
w

so that ufy = wfy and fiu = fiw, then ¥ = w; this seems to be inherent
in the notion of a given process. It will be guaranteed if all maps in the
category of states and processes are monomorphisms, as Grassmann 1844 §8
pp. 40-41 seems to imply. On the other hand, the (self-dual) more general
condition just stated also defines an epireflective subcategory of Cat; a topos
defined by a site satisfying it is locally definable by a poset site which lives
(not in S but) in the atomic Boolean topos S’ of “combinatorial functors”
on the category of finite sets and monomorphisms studied by Myhill and
Schanuel. Because of the latter result (proved by Johnstone in his work on
“QD” toposes), the Myhill-Schanuel topos S’ seems destined to play a role in
such attempts to further broaden the concept of “petit” (i.e. to generalize the
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notion of space while retaining some space-like features): while internally the
typical objects of S’ are natural combinatorial constructions such as binomial
coefficients, externally S’ can be characterized by the model-theoretic job
it does among all S-toposes, which is to classify infinite decidable objects;
many of its remarkable properties in both these roles can be deduced from
Schanuel’s discovery that it is atomic in the sense of Barr, which means
that S’ — § is a generalized local homeomorphism in the sense that the
inverse image preserves all higher order logic. S’ is petit in our generalized
sense for the opposite reason from all our examples: it is defined by a site C
(= the opposite of the category of finite sets and monomorphisms) in which
all maps are epimorphisms in C.
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