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A graphic monoid    M    satisfies identically xyx ■ xy and an 
application of    M    is a right • M-set.    Every left ideal of such 
an    M    is also a right ideal, simplifying and structuring the 
study of the topos of applications.-  An informal process of 

■displaying pictures of graphics and applications is exemplified, 
with conjectured use in the organization of knowledge. The Hege- 
lian organization of knowledge is concretely realized in terms 
of adjoint functors on "any" mathematical category, and is used 
to give a precise definition of the dimension needed for a dis- 
play.    A central fragment of the Hegelian scheme is revealed as 
an 8-element graphic, whose suggestive display has reminded some 
of a taco. 

I.   INTRODUCTION 

By a graphic we will mean any finite category each of whose 

endomorphism monoids satisfies the identity xyx = xy   ; in parti- 

cular,   a graphic monoid is a graphic category with one object. 

By an application of a graphic category we will mean any right 

action of it on finite sets   (i.e.  any contravariant finite-set- 

valued functor on it).     If    I    is any object of a graphic    G     , 

then GC-,1)   is  a particular application   (often called the right 

regular representation in the case of a monoid)   and together 

these give a full embedding of    G    into the topos of all appli- 
cations  of    G     ,   to which we  freely apply the Cayley-Dedekind- 

Grothendieck-Yoneda lemma.     If    X    is  any application of the 
graphic    G     ,  then the  "comma"  category G/X  (whose objects  are 

the elements of    X    and whose morphisms determine the action via 
the discrete fibration property of the labelling functor 
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G/x  > G ) is again a graphic.  Thus each particular appli- 

cation X of  G provides one way G'  » G of expanding the 

graphic G into a more detailed graphic G'  . Even though 

graphic monoids G play a central role, we must also deal with 

graphics such as G/X with many objects.  Similarly, the 

category G of all retracts of objects of G  (which may be 

constructed either abstractly to have as objects the idempotents 

of G or concretely as a full subcategory of the category of 

applications of G  ; note that in the former guise it is 

"a itself" which plays the role of 1&) will again have many 

objects - indeed the graphic identity xyx = xy implies x = x so 

that if G is a monoid then G has an object for every element 

of G (some of those objects may be isomorphic in G ). The 

interest of G '*—>    G is that it induces an equivalence between 

the associated toposes of applications. We intend to associate 

with each graphic Cby a compelling though not yet well-defined 

process),  a "display" which will reveal much of its structure. 

We do associate a well-defined distributive lattice which is it- 

self a standard application and which may be considered to con- 

sist of refined "dimensions" in that it parameterizes all the 

ranks in a Hegelian analysis of the topos of all applications; 

through this distributive lattice there is a well-defined ascen- 

ding sequence, obtained by the Hegelian process of "resolution of 

one unity of opposites by the next"; the length of this sequence 

is the geometrical dimension of the display in our numerous 

examples. 

What is especially striking is that the Hegelian analysis of 

any topos turns out to involve graphic monoids which are in fact 

bicategories.  Thus, the organization of any branch of knowledge, 

insofar as it can be mathematical (i.e. teachable), may in some 

measure reflect itself in graphic displays.  Though proposed [o] 

nearly 200 years ago, the Hegelian method of analysis has been 
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widely under-utilized since then; "conflicting" ideological claims 

either that it is inconsistent or that it is too wonderfully fluid 

to be made mathematical have conspired to prevent its being widely : 

taught. We believe that we have through modest examples shown it 

to be consistent (.and non-trivial) and that much of the method 

should be made mathematical, which would help those who seriously 

want to use it, even that part which remains fluid. 

By a constant  c  in a graphic monoid is meant an element 

such that ex = c for all x . The three element monoid with two 

constants 2>>ä? (so 3. 3. = t).)  has as its applications all the 

reflexive directed graphs; that example plays a central role in 

[l,2] and suggested the name. Toposes of applications of such 

"constant" graphics with more than two constants were investigated 

in £2] , partly as a vehicle for explaining some basic topos 

theory and partly to determine how they were different from the 

two-constant cases in which xiä ,x3,  denote the beginning and 

ending points of an arbitrary directed edge x.  In the course of 

that work, the identity xyx = xy was discovered as the least common 

generalization of constant (x = c) and identity (x = 1) ; later I 

learned that it had been briefly mentioned as a purely formal 

generalization in [3J , where the finiteness was noted, and that 

in £4] a partial structure theorem for such monoids was proved as 

well as a structure theorem for certain more general' monoids using 

these as one of the ingredients.  (Äs for finiteness, it is imme- 

diate that the free graphic monoid on a finite set of letters 

consists of all words without repetitions, of which there are only 

nl >**  i,) .  So far I have not found anv previous discussion of 
1=0 x" 

applications (in either sense) . 

In this paragraph (and the next), we make some imprecise 

remarks about possible uses.  Retrieving stored knowledge presuppo- 

ses some consciousness of the structure it has; this structure 

is in its particularity fixed by the storage process itself (and 
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in its generality is partly a reflection of the content, i.e. 

of the nature of the knowledge stored). Thus in both retrieval 

and storage one needs to be explicitly aware of the kind of 

structure involved.  Here we are momentarily accenting the 

"passive" aspect of the structure, the kind of structure that 

both codomain and domain of more "active" operations such as re- 

write must have (."peeking" may be definable) . Now it is commonly 

recognized that commutative operations such as Boolean inter- 

section are involved, but also "something further". We here 

speculate that non-commuting systems of idempotent operations 

may capture some of the further subtlety.  The arrangement of 

shelves in any science library shows that topological algebra ? 

algebraic topology and chemical physics f  physical chemistry, 

although these are in some sense "intersections". A feature which 

seems to be present is that a sub-branch b is~ not only a subset 

but reflects things x  (.not necessarily in b) to a part bx of 

b which is most relevant to x  (.bx is a single element in the 

generic case of G(-,I)  but the idea retains force in general 

applications). 

As another example, we could assign to every page of every 

book the title page of the book that it is in? clearly this 

operation specifies the set-of all title pages, but much more. 

Such idempotent operations need not commute but on the other hand 

would have a rather strong commutation relation reflecting the 

hierarchical structure of empty documents within folders within 

disks  We have pursued the investigations summarized here in 

the hope that the "graphical" identity may capture many instances 

of this commutation relation.  This hope was strengthened by the 

recent discovery that that identity arises in the Hegelian scheme 

of knowledge.  It is said that the German philosopher Hegel, 

building on the work of Aristotle and in opposition to the eclectic 

listing of categories of sciences by his "metaphysical" predecessor 

Wolfe, proposed to generate the main categories by a single dia- 

lectical process.  The great mathematician Grassmann, partly 

inspired by Leiniz, also emphasized the dialectical method in 
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building up his geometrical theory of extensive quantities. What 

striking contrast between these, who advanced both knowledge and 

its organization, and those to whom x£x is a big issue and 

who lead us astray with library-catalogue paradoxes, when more 

conscious access to libraries is what is neededl 2^ 

II.  Elementary Consequences of the Basic Identity, with special 
reference to ideals 

We begin our calculations by pointing out some remarkable 

consequences of the graphic identity 

aba = ab. 

For any right action X of any monoid M , there is for any 

element x the stabilizer 

Stab(x) = fa£M |xa = x] 

PROPOSITION 1   If M is a graphic monoid, then the stabilizer 

of any element x of any application X is a saturated submonoid: 

ab £stab(x)=^a,b £Stab(.x) . 

Proof: xab = x ==5 xa = xaba = xab = x and xb = xabb = xab = x. 

For any action the part fixed by all M is a (.trivial) 

subaction, but the part fixed by a single a£M, which for idempotent 

a satisfies 

Xa = £x £ X | xa = a J  , 

is usually only a subset (it is a functor of X 1 . 

PROPOSITION 2  If jyr is graphic and a£ M and if X is any 

application of M , then Xa is actually a sub-application, i.e. 

x£Xa=j>xb£Xa for all b£M. 

Proof:  xa = xz£>(xb)a = xaba = xab = xb z^y xb £ Xa 
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is that 
One of the most powerful consequences of the graphic identity 

every left ideal is a right ideal 

which follows from the next proposition, using the fact that every 

ideal of either kind is a union of principal ideals. 

PROPOSITION 3  For any element of any graphic monoid M 

aM £ Ma 

Proof: For every x there is an element xa for which 

a 
ax = x a, 

namely, we can take xa = ax. 

Since every element of a graphic monoid is idempotent, it 
follows trivially that 

every left ideal s is idempotent 

in the sense that SS = s . For a general monoid, this would be 

equivalent to »for every a,  there are u,v for which a = uava». 

This would include all groups, and also the monoid of all endomaps 

of a 2-element set, which figures in [2] .  Perhaps much of what" 

follows could be generalized to all monoids satisfying the two 

boxed axioms above, but if we assume idempotence of elements, it 

can be shown that  aM C Ma implies the graphic identity. 

Often Ma is much bigger than aM , but as a right ideal it 

is a finite union Ub.M of principal right ideals.  The smallest 

number #(a) of b.  required could be considered as a crude 
measure of the size of a 
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PROPOSITION 4  Ma = U b^M iff 

1) b. = b.a for all i 

2) for all x,xa = b.x for some i , 

In particular, one of the b.  must be a itself. 

Proof: xa = b.y for some y so xa = b.xa by idempotence.  Thus 

xa = b.axa by 1) so xa = b±ax « b±x.  Taking x = 1 proves the 

last remark. 

Normally a principal ideal can"have more than one generator, 

but in a graphic the elements are faithfully represented by right 

ideals: 

PROPOSITION' ' 5  In a graphic monoid,  aM = bM=^a = b . 

Proof: We have a=bx and b = ay , hence by idempotence a = ba 

and b = ab . But a = ba = bab = bb = b. 

For principal left ideals we do not have faithfulness but we 

do have, since Ma = Mb iff a = ab : 

PROPOSITION 6  In a graphic monoid, Ma = Mb iff a = ab and 

b = ba iff Stab (a) = Stab(b)  iff a,b are the images of c^/c^ 

under a homomorphism from the three, element monoid with. 2 constants. 

Note that aM/-\bM , while a right ideal, is not usually a 

principal right ideal and is often even empty. But for principal 

left ideal this situation is simpler: 

PROPOSITION 7       Mab = Ma f\ Mb 
Ml = M 

for any graphic monoid.  Hence Mab = Mba. 

Proof:  Mab ^ Mb is clear.  By the graphic identity, we also 

have Mab £ Ma .  If an element x is in both Ma and Mb  , 

then x = xa and x = xb by idempotence, so x = xb = xab£Mab. 

As Kimura [4] proved and used, the image CM of the homo- 

morphism M —> (left ideals, r\)   thus defined is actually the 
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universal homomorphism to any commutative graphic monoid 

(=semilattice) .  Schanuel (.unpublished) showed, as suggested by 

Propositions 1 and 6, that this semi-lattice reflection CM can 

alternatively be constructed as part of the set of all saturated 

submonoids under the join operation on such (.note that Ma - Mb 

iff Stab (.a) ^Stab(b) ). 

Now we recall that in the topos of all applications of M , 

the truth-value application JO. is the one consisting of all right 

ideals of M , under the action of each b £ M defined at A by 

A:b = jx£M |bx£A] 

which is easily seen to be another right ideal if A was. The 

universal use of -T2 is: if YCX is any sub-application, then 

X ¥  >il  defined by 

g?x = fa £M | xa £YJ 

is an M-equivariant morphism of applications, and the unique one 

for which. 

x £ Y <^==J> y* = true 

(where true = M£,£l ) holds for all x in X . In general ^?x 

is thought of as the truth-value of the statement  nx £Y" , which 

value just consists of all available acts which bring about actual 

truth.  For example, in the case where applications = directed 

graphs, there are five truth.-values, two of which are points, one 

is a loop at true, and the other two are edges connecting (.in the 

two directions) true with false = 0 . 

In the case of a graphic monoid we have shown (Proposition 3). 

that every left ideal is a right ideal. Even more remarkably, if 

we consider the sublattice -^i^f^ &■  (°f t*10 distributive 
lattice of all right ideals), which consists of the left ideals, we 

have 

£8 



PROPOSITION- _8      For a graphic monoid    M, jfLc-Qis a sub-appli- 
cation . 

Proof:  If S is a left ideal and a£M , then S :a = £b | afa £ s]. 

We must show that this is again a left ideal.  So suppose ab £S 

and that c£M ; we must show cb£,S:a , that is that acb £ S 

But acb = (aca)b = acab ***  Mab £ s since s itself was a left 

ideal. 

Even though the inclusion of posets fl^c il has both a left 

adjoint  (A J—> MA)  and a right adjoint, neither of the latter 

is a morphism of applications.  For example, for directed graphs 

(where .«J ^true in the ordering, which we suppress) the inclusion 

in question is 

d 

which admits no graph-theoretic retraction (order-preserving or 

not) . Note that aM ^ bM =£>Ma £ Mb . 

Although applications in general do not have left actions, 

we can ask: For which inclusions YC X of applications does the 

corresponding characteristic map <P:X —> Q  actually factor 

through the sublattice il^C £L  of left ideals? In the example of 

directed graphs, the above picture shows the answer to be: those 

subgraphs Y of the graph X for which no directed edge of X 

enters Y or leaves Y except on excursion, i.e. 

xPo£Y£=> xS^tY for all x . 

Now in the generic application X = M  , the left multipli- 

cation by a may be considered as the reflection of an arbitrary 

x to (the "most relevant element of"?) the fixed point set Xa 

In a particular application X , left multiplication by a is 

usually not defined.  However, by proposition 2, XaCX is a 
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sub-application, and hence by the universal property of -fl there 

is a unique characteristic map <p :X —£• il i  and we have 

aM * ^x for all x  , for even Ma *= CP x.    We may ask, when is 

¥- (x)£ £1* 7  By definition 
a     Q 

PROPOSITION  9    ^(X)£Ü^ iff 

Vb,/\ £ M   (xba = xb z=px% ba = xÄ b] 

PROPOSITION 10  If X = M and if M consists only of constants 

and 1, then <f x £ H^ for all x, a£M. 

Throughout this paper we consider only the category of right 

actions or "applications'* (categories of left actions are treated 

very briefly in the examples in [2J  and have rather different 

properties)..  Thus it must constantly be kept in mind that whenever 

we attribute a property such as "connectedness" to a left ideal S , 

we are using our proposition 3 to consider S as an object in the 

category of Cright), applications-connectedness of S • as a left 

action would mean something quite different!  Similarly, when the 

set -Tig of left ideals is considered as an object in a category, 

it will be (.either as a lattice or) according to proposition 8 

as an application. 

III.  Elementary Examples and their Intuitive Displays 

In preparation for listing some examples of graphics, let us 

make explicit some facts about the role of constants, 

PROPOSITION 11   Every graphic monoid contains constants. 

Proof:  Since we have assumed finiteness, let c be the product, 

in some chosen order, of all the elements of the monoid.  Then 

ex = c for any x  , since x already occurs first as a factor 

of c  , and the basic identity cancels second occurrences. 
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For example, the free graphic monoid on n generators has nl 

constants, since all words of maximal length are distinct. Orf the 

other hand, all those can be collapsed to one without imposing any 

further relations between words of shorter length. Thus (not only 

commutative) examples may have a unique constant. 

PROPOSITION 12  If c is a constant, then so is ac for any a. 

Thus Ma includes all constants, hence any non-empty left ideal 

contains all constants.  Also if there is a unique constant o  , 

we have  ao = o for all a 

The left action of M on the set T  of all constants of o 
M may thus fail to be faithful. However, we can always adjoin 

new constants, for example via the sub-representation Mux of 

the faithful" left regular representation of M on X = M .  If 

we do that to the four-element free semilattice on two generators 

x,y , we get a six-element graphic whose display will turn out 

to be the two-dimensional picture 

Of course any free graphic monoid does act faithfully Con the 

left) on its constants. For example the five-element free graphic 

monoid on two generators a,b has the two constants ab and ba, 

on which the generators act by interchanging them; however, its 

display will turn out to be the one-dimensional: 

1 
a b 

ab ba 



The graphic monoid ^ with only three elements, two of 

which are constant, is displayed ... - 

and all its applications are "one-dimensional", being directed 

graohs.  It is of wide use in analyzing more complicated graphics, 

for example, consider the graphic monoid M which is freely 

generated by two elementsd   ,3^ subject to the one relation 

2,o(= 3,  and define dQ  -^  •  Then 

loh  = **A  = So 
3.3 «It* d_ = 3.o<-3 
loll   1   1 

so that any M-application has in particular an underlying directed 

graph, but is more in that o<  also acts on the directed edges.  In 

addition to the defining relation, we have äQc< »o^«* =<*^ = 3Q 
so that both 3-  remain constants even in M . The definition of 

3  says that any x<* ends at the beginning of x  , but moreover 
o    - 

^    = CA2-,  =3  so that xc<   is a loop at x3Q  - 

edge x in an application carries with it a picture 

Thus every 

if    x    is interpreted as a process, we might consider    KC<  as the 
"preparation" necessary for-   x     .     In order to represent    M    faith- 
fully by endomaps,  consider one more constant * together with 
3 9,     and define an operation on this three-element set by 
o  l ._ The left-ideal lattice Ii£ has o<(3> )   =o((9,)   = 3 o X o 

four elements 

, oU*)  = *  • 

0CM3    = M^CMoC C M 
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but M<7< = Q is not "connected", which will mean that 

even as a graphic in its own right, M must be displayed as 

one-dimensional.  This contrasts with 

£\x  x i^  = yc 

Äl  r 

o '//////¥////, y. *ih - ^jxi 

a two-dimensional, nine element graphical monoid, which like 

the above M also receives a homomorphism A^ —» A^ * -^ r 

say the diagonal.  Along the latter, we also get an underlying 

graph, whose display is 

In general, if every homomorphism A^  —>M is assigned a color, 

then all the underlying graph structures of M could be simul- 

taneously displayed. 

For another important example, recall that graphs underlie 

the theory of categories, but that there are also 2-categories; 

underlying the latter are 2-graphs, the generic example of which 

is n 

*O<2^]^5M 

i"j -x 

This can be made into a five element (four generator), graphical 

monoid by defining & £. = &   ,  D.D. - D. ,  D± #j - Äj , ^j -& 
Every 2-category (for example the 2-category of all graphics, all 

functors between these, and all natural transformations between 

those) has an underlying application of this monoid, in which 
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the ^D. are the domain and codomain "functors" of any "natural 

transformation" S^S^'l and FD.  are the domain and codomain 

"categories" of any "functor" F .  The lattice £±£ turns out to 
be a "linearly-ordered set isomorphic to Aoc^O ^1 <2} where 0 

stands for the constant Sj.     but 1 stands for the left ideal 

>^-      ^> which is already connected as a right ideal, hence (by 

the general theory to be described presently) the graphic itself 

has a two-dimensional display. 

If to a nontrivial graphic monoid we adjoin a new identity 

element, so that the original monoid becomes a connected left 

ideal in the new monoid, we get again a graphic monoid of 

dimension at least two.  If we do this to ^.   , and denote the 

original identity element by w , we see 

a»- 

that w is more of a "core" than a "boundary", and moreover that, 

since this is a homomorphic image of 

- w 

a       wa       b 

dimension can be increased by homomorphic image.  Since w3. =3., 

in the underlying-graph display of M the cloud 1 condenses into 

another arrow parallel to w 

In order to describe a certain class of examples, two more 

propositions will be helpful. 

PROPOSITION 13  The lattice X2.£ of left (=bi) ideals in a graphic 

monoid M is linearly ordered iff for every pair a,b of elements 

in M 
a = ab or b = ba 

Proof:  This is the condition that Ma - Mb or Mb - Ma,  i.e. 

that the (semilattice) commutative reflection CM be linearly 

ordered. But the left ideals of CM are included surjectively 

into the left ideals of M  , and the left ideals of a linear semi- 

lattice are clearly linearly ordered. 
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PROPOSITION 14  (Schanuel)  Suppose that the endomorphism 

monoid of an object A in a category (such as M) satisfies the 

graphic identity, and that B is any other object.  Then there 

is at most one splittable epimorphism A -*-* B .  In case A,B 
are retracts of a common graphical object I with idempotents 

a,b then p exists iff Mb £ Ma , where M is the endomorphism 

monoid of I 
Proof: Suppose p has splitting section s  , but that also q 

has splitting section i  ; that is  ps = lß = qi .  Then of 
course sp and iq are idempotents at A , but since A is 

graphic also ip and sq are idempotents.  Better 

sq = s(pi)q = Csp) Ciq) Csp) = sCpiqs)p = sp 

so that q = p because s is a monomorphism. It is easily 
checked that at least one p exists iff b = ba , in the M case. 

Thus in any graphic the subcategory of all splittable epi- 

. morphisms forms a poset. If -,      '■      ■_ 

A = Bn -^ Bn_1 -» 3n_2 —» . . / -» B0 -fr B_„ 

is any linear family of splittable epimorphisms in- any category, 

and if we consider for each k any non-empty finite set of 

sections B, , <-—■—> B.  for pv / then the submonoid of endomor- 
phisms . of A obtained by considering all composites will be 

a graphical monoid.  Special interest will attach in part IV. 

to the case where we consider two sections for each p^. 

Note that the unique retraction I —^ aM "represents" on 

the level of elements all the unique inclusions X& C—? X in 

the topos of applications of M 

The (one-dimensional) graphic monoid with four constants 
and five elements (which was described as a "bare unity" in [2J) 
can be embedded in the two-dimensional ^ * #A ; the one dimen- 

sional connection might be displayed as 
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Another interesting embedding is 

PROPOSITION 15 The free graphic monoid P on two generators 

a,b can be embedded in J^ * 4-^ * ^^   . 

Proof: Note that M = ^. *  ^,  has a pair of elements f,s such 

that s 7* fs = sf 7* f .  For any such M  , F can be embedded 

in Mx^  by sending a =\f,3Q>, b = ^3,^) . 

IV.  unity and Identity of Opposites in Bicategories and precise 

Definition of the refined and coarse Dimensions of Displays 

In order to clarify the notion of dimension which arose in 

our intuitive displays of graphics, as well as to provide an 

infinite number of examples of graphics arising from non-idempotent 

mathematical structures, consider the following 

DEFINITION  A functor G.—=► 3  will be called a unity-and- 

identity-of-opposites (UIO). iff it has both left and right adjoints 

and one of the latter is full and faithful (.hence both are). Then, 

denoting by L and R the two idempotent endofunctors of CL 

obtained by composition, we have also LHR and LR = L, RL = R. 

The two adjoints are the inclusions of two opposite sub- 

categories united in CL , yet identical with Q   . The terminal 

functor CL—*  1 is a UIO iff CL has both initial and terminal 
objects;  the latter may be called non-being and pure being resp., 

and in general L .is "non" whatever attribute (of CL\     R is the 

"pure" form of.  If CL  is a topos then fh  will automatically be 

a tooos as well; this applies to our fundamental class of examples, 
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where CL is the category of all.applications of a given graphic. 
In case ß is a topos,  R is called the /S-sheafification, and 

"non" sheaves may be called ^-skeletal. The set of all UIO's 

with a given Ci forms a poset with respect to the "greater than" 
ordering Q, 

This poset is often small even when Q. is large and is often a 
complete lattice, as is shown in a forthcoming joint paper with 

Kelly [s2    . For example 

PROPOSITION 16 If d is a category of all right actions (on sets) 

of a small category C  , then the poset of UIO's with domain 

is equivalent to the poset of all idempotent two-sided ideals in 

the category C  , with the empty ideal corresponding to CL—5» %. 

Corollary: For the category CX. of all applications of a given 
graphic monoid M the poset of all UIO's is parameterized by 

the poset of all left ideals of M .  In more detail, if S is 

a left ideal of M , then an application X is an S'-sheaf iff 

every morphism S —> X in d  is of the form s f—£• x«s for a 
unique element x of X , and on the other hand the S-skeleton 

Le (X) C X of any application X is given by 

LSX ■ y *■ 
i.e. all those elements of X that are fixed by some s£S  . 
Moreover, (since idempotence is automatic and quite unlike the 

general case) (not only the suprema but also) the infima in this 

finite (distributive!) lattice are computed as ordinary (unions 

and) intersections. 

We will attribute refined dimension's to all applications 

X which satisfy the "negative determination" LgX -2=-» X . 
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In particular, 0 will also be called of dimension-GO and TQ  = 

the set of all constants of M determines the subtopos A3Q  of 

all "codiscrete" applications so that o-dimensional means 

"discrete": We will assume that M has at least two constants, 

which implies that Xi. is connected  ny1 = 1) and that the 

"components" functor CL—*-*■ BQ  (extra left adjoint to the 

discrete inclusion) preserves finite products £L,2J . To define 

coarse dimensions 1,2,... we will use the following 

DEFINITION:   If S ^ T are left ideals, say that T resolves 

the opposites of S  , in symbols 

S <<T 
a 

iff every S-skeletal application is a T-sheaf, i.e. iff R^g = Lg 
Because of the nice properties of intersection mentioned in the 

corollary to Proposition 16, there is for every S a smallest 

S'  which resolves the opposites of S ; we may call S»  the 

"Aufhebung" of S  .  Then the Aufhebung of pure being versus 

non-being is pure becoming versus non-becoming, i.e. codiscrete 

(chaotic) versus discrete, since if 0    is to be a T-sheaf, 

then there can be no maps T —> 0 , i.e. T must be non-empty, 

but by Proposition 12,  TQ C= the set of all constants of M ) 

is the smallest non-empty left ideal; thus  (-00)' ■ 0 as 

claimed.  Since, intuitively, one-dimensional figures are the 

dimensionally-smallest ones which permit connecting all those 

points that can be connected, still more satisfying is 

PROPOSITION 17  0' - 1.  That is, TT0LT = TTQ    iff "RT
L
0=V Thus 

T,  is characterized as the smallest left ideal of M which is 

connected as a (right) application of M 

Proof:  Composite adjoints are adjoint composites. Or, if discrete 

applications D are to be T-sheaves, then every T —9» D must 

come from an element of D  ; but elements of D are constant 

(non-becoming), hence every T-—> D must be constant (e.g. for 

D = 2), hence T must be connected. 
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Corollary; If MN£L] is not connected/ then M is one-dimensional, 

whereas if Msfl} is connected and is the "Aufhebung«* of some s 

which is in turn an Aufhebung..., then M is at least two- 

dimensional. 

Here the dimension of M itself is defined in terms of the 

length of the sequence T
n+i

= Tn; exPerience C6J w*th other examples 
suggests that this length is the dimension for small dimensions 

and a simple function of it for higher dimensions. 

PROPOSITION 18 If M is the free graphic monoid on k ^ 2 

generators, then dim M = 1. 

Proof: Since "first letter of a word" is well-defined, 
k 

MN{I] = ^ a.M 

is a disjoint sum in the category of applications, hence not 

connected. 

While principal right ideals are connected, principal left 

ideals need not be, for example, Ma in the free example on a,b : 

att C Ma C M 

J II II 

i la 

a <Z ab# C t 
t • 

a] 0" ba# r 
An even smaller example of an "infinitesimal dimension" is 

provided by 

M = 

where G is a left ideal. But note that a left ideal which 

contains a connected left ideal is itself connected, for any t 

can be moved to a constant by the right action of a constant. 
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Now consider any category Cc with initial and terminal 

objects 0,1 and a double resolution of the latter by C r ß 

which successively climb Cl -ward d—P   S—^ C  —£• &   . Let 

r = pure C ,  C~  non C t    R - Pure ß, L = non Q. The first 

resolution means r0 = 0  (which implies Q.77CO if Uis a topos) 

while the second,  R£ = £ means that there are three (rather than 

four) subcategories of Q.  "identical" with C .    Assume for sim- 

plicity that also £l = 1  . Consider the category^ of all endo- 

functors of £L definable by composition from these and all natural 

transformations definable from the adjunction morphisms. 771  is a 

finite non-symmetric monoidal category, and there is only one ob- 

ject q = Lr in W.  which does not have either a left or a right 

adjoint in Tit-  it comes from the third embedding of ^ in d . 

PROPOSITION 19  The objects of TK  under composition constitute 

(up to equivalence) a graphic monoid of ( - ) eight elements which 

has five left ideals 
0ojofi]c[£,q,r] C[L,B]C(J  J 

(where we have shown only the elements new at each stage) . 

The middle of these (generated by any lower case letter) is already 

connected (by the right action of 0 11. 

Thus the display of TK.is apparently 

Hegelian "taco", a display 
of the 3-dimensional 
8-element graphic monoid Wl 

which reminded some of a taco: All the me-at of Q, is inside  1^ , 

while there are two identical faces L,R with a common edge <  and 
separate (but identical) edges q,r. 
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To finish, the proof that >•// ,is really three-dimensional, 

we need only shew that the Aufhebung of [^t°f^l    is just  [_L,RJ, 

i.e. does not somehow jump all the way to the top  [L~] of the 

dimension lattice as happens in other examples. But S =^,q.,rj 

is actually principal S = ?lti,  while for such principal ideals 

it is easily seen that L X = X-t    for all applications X of///? 

thus for X to be S-skeletal merely means that all elements of 

X are fixed by the right action of -c .  Suppose X is all 

fixed by ^ ; we must show that X is already an [L,RJ-sheaf-, 

so consider any morphism [L,R] *• X    of applications, which 

we must show comes from a unique complete element of X . The 

uniqueness is immediate, since if x,y are any two elements of 

X with, the same [L,RJ part f  , we have xt = yt for all 

t£ {~L,R1 , but t = yt is such and we have already assumed X 

fixed by Z '  thus x = x/= y/ = y .  For the existence of an x 

extending the partial element f  , note that, while a general 

application X consists of a complicated interlocking system 

of "tacos", the skeletal condition means that these are all de- 

generated with, x = x.Z=  xq = xr , i.e. all three "edges" of any 

element x coincide; this implies also xL = X/L = xX = x and 

similarly xR = x , leaving only the endpoint operators xO, x»l 

acting possibly non-trivially: to sum up, such a skeletal }iC~ 

application is in essence just a directed graph. Now a partial 

element f defined only on the faces [L,R] = Ml*    has in parti- 

cular all its values fixed by A.  due .to the skeletal condition, 

ftt).. = fiL).I = ftti) = ft£) 

f(R) = f(R)£  = £(Rl)   = fU) 

the last being true because of the Aufhebung condition R-c= -\. 

in the definition of 4%  itself.  Thus the element x = fCc) 

seems the likely candidate for a complete (degenerately) three- 

dimensional element whose restriction to the seven-element ideal 

[L,R] could be f itself.  Thus we try to show 
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f (l)a = f (a) 

for all  seven    a£[L,Rj   .     For    a = L,R    we have  by the  above 

f U)L =   f(L)L =   f(.L) 

f (i)R =  f (.R)R =  f (R) . 

(.both of course equal to f(£)   ).  For the two constants  a = 0,1 

we have f(/)a = f(ia) = f(a)  since /o = o,ü,l = 1 •  For the 

remaining three a = ^,q,r the case a = t    is tautologous, and 

for a = r,q we have 

f (/).r = f C&) = f U) 

f(£)q = f(£)Lr = fCfrr) = £(/) 

so that we are reduced to showing that 

f(r) = fU)   = f(.q). 

For this we need to use that    f    is  defined also on the two-di- 
mensional    L,R    since otherwise these could be three different 
edges   (with the same endpoints  f (.01 ,f CD   )   of the directed graph. 

But since    f (R).  = f (Z) , 

fix)  = fCRr)   = f(.R).r = f(i)r= f(./r)   = f(# 

and since f(.L)   = flZl, 
f(q) = f(.Lr)   = f(.L)r = f(/)r = f (/r)  = f,(£) 

so the proof is done. 

Of course the above display does not show that^iis a 

monoidal category, not just a graphic monoid;  if X £ Ct   is any 

"morsel", then the horizontal slice through the "taco" at X 

actually has canonical morphisms of Q (indexed by 1/U ) , which 

are roughly the "Moore-Postnikov" analysis of X in case 

£l=combinatorial topology, as follows: 
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Part of the category 
structure of lit revealed at the 

"morsel" X£,£{by the analysis 

£x '.—> LX —* x —> RX —» rX 
of X in terms of its 7b  and G  reflections 

measuring how closely the various reflections of X  (into the 

grasped stages Q ,  73)   succeed in approximating it. 

PROPOSITION - 20 The "slice" obtained fay omitting 0,1 from 4M. 

is as a graphic monoid isomorphic to a six-element submonoid of 

the monoid of all order-preserving endomaps of a three-element 

linearly-ordered set; namely omitting 001, 002, 112, 122 from 

the latter corresponds to the former via 0 I—>X. / 1 I—> 3/ 

2 I—^ r . (Note that y£,q.rr  have become constants through this 

omission). 

The proof is left to the interested reader. 
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NOTES 

1) This reseaxch was not supported by any granting agency. 

2) I am not a "Hegelian", since I reject Hegel's Objective 

Idealism. But Hegel's partly-achieved goal of developing 

Objective Logic (as a component of the laws of thought at 

least as important as the Subjective Logic commonly con- 

sidered to be "all" of Logic)  is in a way the program 

which the whole body of category theory has been carrying 

out within mathematics for the past 50 years.  It was 

because of some discoveries in the foundations of homotopy 

theory that I began a few years ago the study of 

The Science of Logic, attempting to extract the "rational 

kernel" which, insofar as it truly reflects laws of thought, 

should be useful to us in investigations like the one 

summarized in this paper. 
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