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State Categories and Response Functors

F. William Lawvere

Dedicated to Walter Noll

The concept of state, which was already included among Aristotelian categories, is

logically presupposed by all science, yet becomes clear only after extended development

of several particular sciences.

In recent decades, important advances in the understanding of the concept of state

have been made by Walter Noll [1] and others [2], yet further simplification will allow

still wider use of these advances. With the help of the modern theory of categories,

due to Eilenberg and Mac Lane [3], many parts of geometry and analysis have been

simplified through unification. The following considerations are offered in the conviction

that category theory can also assist in unifying the diverse concepts of the foundation of

continuum physics with each other and with other parts of mathematics.

Plato’s observation (incorrectly attributed to Heracleitus) that “all is flux” and “nothing

is”, does not lead to exact science, for exact science requires sober consideration of precise,

distinguishable states. On the other hand, states are just the way-stations in definite

processes of change, so that neither states nor processes can do without the other. Further,
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among processes there are special ones that are not processes at all. These observations

are descriptive of the relationship of objects, morphisms, and identity morphisms in a

mathematical category. Thus the theory of mathematical categories provides precise

terminology and constructions for a significant part of the theory of states. For example,

the notion of a cyclic process, beginning and ending at a given state, may be identified

with that of endomorphism of a given object. But what particular structure and

properties will categories, arising in this manner from continuum physics, enjoy? Can

we hope to characterize such categories mathematically? It appears that they have very

strong properties, some of which I shall try to explain in this paper.

Perhaps one day a (useful and not merely speculative) analysis of the concept of time

will arise from a deeper study of state categories themselves, but (at least in the continuous

case) we must here consider duration—as an additional structure on a category.

Definition 1. If x is a morphism in a category X , then the interval I(x) is the category

constructed as follows: An object of I(x) is an ordered pair (α0, α1) of morphisms of X
for which x = α1α0 and a morphism (α0, α1)

a
(β0, β1) in I(x) is any morphism of X

such that β0 = aα0 and β1a = α1

•

•

•

•

α0

β0

α1

β1

x

a

(of course β1 aα0 = x for any morphism α
a
β in I(x)). If β b γ is another morphism

in I(x), then α ba γ is easily verified to be another morphism in I(x)

•

•

•

•
•

α0

γ0

β0

α1

a

γ1b

β1

thus defining the composition operation needed to make I(x) a category.

Proposition 1. If X0
x
X1 is a given morphism in a category X , then there is a

canonical “forgetful” functor I(x) X which to any X0
α0 A

α1 X1 with α1α0 = x

2



assigns the object A in X . The category I(x) always has an initial object 0x = (1X0 , x)

and a terminal object 1x = (x, 1X1) which map to X0, X1 respectively via the canonical

functor I(x) X , while the unique morphism 0x 1x in I(x) maps to x.

We may sometimes write A ∈ x to indicate that A is in the image of the canonical

functor I(x) X .

Definition 2. A functor X d T will be called a duration if for every morphism x in

X the induced functor I(x) d I(dx) is an isomorphism of categories. This definition

will be used mainly when T is a commutative monoid considered as a category with one

object.

Remark 1. Our definition I(x)
∼ I(dx) of duration functor d is equivalent to the

requierement that d enjoy “unique lifting of factorization”, i.e. d(x) = t1 + t0 ⇒ there is

a unique pair x1, x0 for which x1x0 = x, d(x1) = t1, d(x0) = t0.

Proposition 2. If X d T is a duration then each morphism X
x
X ′ in X determines

t = d(x) in T and a function (the succession of states determined by the process x)

|I(t)| |X |
|x|

from the interval of length t in T into the set of objects of X , whose value at the initial

object of the interval is X and whose value at the terminal object of the interval is X ′.

Proof 1. Compose the inverse of the functor induced by d with the canonical forgetful

functor

I(t) I(x) X .
∼

Proposition 3. If X d T is a duration and if T is a category in which every morphism

is an epimorphism, then X also has the property that every morphism is an epimorphism.

Proof 2. Suppose X0 A X1
α x′

x′′
are such that x′α = x′′α; we must show x′ = x′′.

Since d(x′)d(α) = d(x′′)d(α) and since d(α) is an epimorphism, we have d(x′) = d(x′′).

Denoting by x = x′α = x′′α the common value, we see that I(x)
d
≈ I(dx) takes the two
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objects (α, x′), (α, x′′) to the same object of I(dx); hence these objects are the same, so

that in particular x′ = x′′.

Proposition 4. Let T be a monoid (category with a single object) whose composition is

commutative and written additively. Suppose T satisfies the two cancellation properties

t′ + s = t′′ + s =⇒ t′ = t′′

t+ s = 0 =⇒ t = 0 and s = 0.

Then for any category X which admits a duration functor X d T valued in T (i.e.

d(α1, α0) = d(α1) + d(α0), d(1A) = 0) one has that every morphism α in X is both an

epimorphism and a monomorphism but not an isomorphism nor an idempotent unless

α = 1A is an identity. That is, any α is both right cancellable and left cancellable, but

α1α0 = 1X =⇒ α0 = α1 = 1X

αα = α =⇒ α = 1A.

Proof 3. The first cancellation law for T says that all morphisms in T are epimorphisms,

so by the previous proposition the same holds for X . Since the previous proposition

can be dualized and since T is commutative, it also follows that all morphisms in X are

monomorphisms. On the other hand if we have even a one-sided inverse (a retraction or

section) then

α1α0 = 1X

d(α1) + d(α0) = 0

so that, by the second cancellation property, dαi = 0 and hence αi = 1X since d is

“locally” injective I(1X)
∼ I(d1X) = 1. Of course, the non-existence of non-identity

cyclic processes α which are idempotent αα = α already follows from the fact that each

α is an epimorphism.

Remark 2. The primary example of monoid T for continuum mechanics is the set

of non-negative real numbers under the operation of addition, so that the category I(t)

becomes isomorphic to the linearly ordered set [0, t]. For comparison we may also consider
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the discrete case where T is the additive monoid of non-negative natural numbers; a

striking difference between the two is that t1 > 0, t2 > 0 =⇒ I(t1) ≈ I(t2) are isomorphic

categories in the continuous case, whereas in the discrete case the size of an interval is

intrinsic in the sense that a category can have at most one duration functor to the additive

monoid of natural numbers. The properties stated in the above proposition are in the

discrete case related to those which led Leroux [4] to a powerful generalization of the

Möbius inversion formula.

Example 1. If T is any category and if T0 is any object, consider the category T/T0 whose

objects are morphisms T T0 in T and whose morphisms are commutative triangles of

the form
T ′ T

T0

in T. The obvious forgetful functor T/T0 T is always a duration. If T has left

cancellation (more generally, if every morphism to T0 in T is a monomorphism) then

T/T0 has the stronger property of being a poset (that is, a category in which there is

at most one morphism X X ′ for each given ordered pair of objects). In case T is a

monoid (so T0 is the unique object) then T/T0 is usually referred to as the divisibility of

T; for example if T is additive, t′ t in T/T0 iff t′ ≥ t, and the forgetful duration functor

T/T0 T

is usually denoted as “difference”, which is a functor because t′′ ≥ t′ ≥ t implies

(t′′ − t′) + (t′ − t) = t′ − t.

Incidentally, the category of categories seems the only reasonable context in which

fundamental relationships between objects as disparate as posets and monoids become

structure-preserving morphisms.

Example 2. Given a set |X | and a suitable monoid T, a path-category can be constructed
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by considering the elements of the set as objects and functions |I(t)| x |X | as morphisms.

Composition is defined by using a push-out property of

1 I(t0)

I(t1) I(t0 + t1)

X

1

0 j0 α0j1

α1

x

where j0(s0, s1) = (s0, s1 + t1)

j1(u0, u1) = (t0 + u0, u1).

The push-out property (i.e. the unique existence of the indicated x) follows if T has

the property that all its intervals are linearly ordered; for if w ∈ I(t0 + t1), then

the alternative w ≤ t or t ≤ w allows the determination of x(w) using either α0 or

α1 as appropiate. Note that a subcategory (of a category with duration) which is

moreover closed with respect to factorization, is again a category with duration; in

practice, examples are such sub-categories, consisting of processes physically possible in

certain contexts, of path-categories.

Smoothness properties such as differentiability are not preserved under the above

push-out, yet in spite of this severe handicap the convenience of having a category (i.e.

closure under composition) has traditionally been considered more compelling, leading

precisely to the notion of “piecewise smooth” paths. The linear ordering appears again

below.

Definition 3. A freeze of an object X in a category X is an endomorphism f of X with

the property that for any factorization f = α1α0

X

X ′

X

α0

f

α1

in X one has X ′ = X (i.e. that α0, α1 must also be endomorphisms).

Thus intuitively, a freeze is a process (for example a deformation) throughout which

the state (or configuration) remains unchanged.

6



Proposition 5. If X is a category in which

I(1X)
∼

1 is a one element category for any object X

and

I(x) is a linear order for any endomorphism x,

then the freezes of X form a submonoid of the endomorphism monoid X (X,X) of all

cyclic processes beginning and ending at X.

Proof 4. The first assumption is precisely the condition that 1X has no non-trivial

factorizations, so is certainly a freeze. We must show that the composition of two freezes

f, g is a freeze. Consider any factorization gf = α1α0.

X

X ′

X

X.

α0

f

α1

g

vu

By the linear ordering, either there is a u such that α0 = uf and α1u = g, or there is a v

such that gv = α1 and f = α1α0. In the latter case X ′ = X because f is a freeze and in

the former case X ′ = X because g is a freeze. Hence gf is a freeze.

Note that in a monoid every morphism is a freeze, since in fact the condition that f

be a freeze of A in any category X , is equivalent to the requirement that the canonical

functor from the interval of f maps entirely into the submonoid of X consisting of cyclic

processes.

I(f) X

endX (A)

Proposition 6. If X d T is a duration with values in a monoid, then any section of d

consists entirely of freezes of some object A of X.

Proof 5. By a section of a functor d is meant a functor T
ϕ X such that dϕ = 1T .

If T is a monoid then ϕ(0) = A is an object and ϕ parametrizes certain submonoid of
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endX(A) which is isomorphic to T. Now we use the special property that d is a duration

to show that each ϕ(t) is actually a freeze. The diagram

I(ϕ(t)) I(dϕ(t)) = I(t) I(ϕ(t))

X T X

∼

d ϕ

shows that I(ϕ(t)) maps into a monoid in X since the functor goes via a monoid T.

A section ϕ of a monoid-valued duration need not meet all freezes at the object A

which ϕ meets, although it must if all freezes at A commute. Indeed for any duration d

and any two endomorphisms of A, if d(f) = d(g) and fg = gf then f = g.

For studies as diverse as control theory and the theory of material constitutive relations,

it is necessary to consider explicitly the relation between processes of “deformation” which

can be in principle freely carried out on “configuration” states and the processes on

internal states which must necessarily accompany the former. This relation we will take

to be that of “fibration”, to be defined presently. From a certain point of view the

processes that it should be possible to “freely” carry out in any situation must include

the freezes, although in fact the cost of the supplies necessary to keep a configuration

frozen may be substantial.

Definition 4. A category C equipped with a duration functor C d T to non-negative

reals will be called a configuration category (and its morphisms referred to as deformation

processes) in case for every object C of C there is a given section ϕC of d for which

ϕC(0) = C.

Remark 3. Of course in applications the configurations may include thermodynamical

and other components as well as the purely mechanical aspects (such as infinitesimal

metric) usually considered as configurations.

The duration may be considered as the supply of time required to carry out a process,

in the sense of the general definition which follows:
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Definition 5. A functor X Q Y whose codomain is a commutative monoid will often

be called a supply, and Q(x) referred to as the supply of Q needed for the process x.

Proposition 7. Let p :V W be a given functor between commutative monoids and

let X ∆V V , X W W be supplies. Suppose X has a duration to a commutative monoid

T whose intervals are linearly ordered and has I(0) = and that W is equipped with a

submonoid W+ of “non-negative” elements. Define

X p = {x ∈ X |for all y, u, v, if x = uyv then W (y) ≤ p(∆V )(y)}

where ≤ is defined using W+ in the usual manner. Then X p is a subcategory of X with

the same objects and the restriction of d to X p is still a duration.

Proof 6. If x is any identity process then any subprocess y (i.e. x = uyv) is actually

y = x since I(x)
∼ I(0) = ; (W )(id) and (∆V )(id) are both zero, so x ∈ X p. If

X
x0 X ′

x1 X ′′ are each in X p and if y is any subprocess of x1x0,

• •

• • •

y

uv

x0 x1

then by the linear ordering of I(x) (where x = x1x0) we can reduce the question whether

x ∈ X p to three cases: namely A (v, uy) ≤ (x0, x1) or B (x0, x1) ≤ (v, uy); in the

second case B , y is a subprocess of x1, (hence y satisfies the inequality) while in the first

case A there is z for which

• •

• • •

y

z uv

x0 x1

is commutative. Then z is a subprocess of x0, hence in X p. Thus there is a further

alternative

A1 : (z, x1) ≤ (y, u) or A2 : (y, u) ≤ (z, x1),

9



in the second case A2 of which y is a subprocess of z, hence in X p, while in the first

case A1 there exists w for which

• •

• •

y

z u

x1

w

is commutative. Then w is a subprocess of x1, hence in X p, so that y is a composite

of w and z, both of which satisfy the inequality concerning the bound p on the average

pressure.

But the calculation following shows that the processes satisfying the inequality form

a subcategory:

W (y1y0) = Wy1 +Wy0 ≤ p(∆V )y1 + p(∆V )y0

= p((∆V )y1 + (∆V )y0)

= p(∆V )(y1y0).

Thus y satisfies the inequality as was to be shown.

Remark 4. If we assume (∆V ) = 0 and W (ϕ) ≤ 0 for freezes ϕ, (i.e. that work must

be done on the system to keep it frozen), then X p will contain all freezes of X . We have

described this (oversimplified) example partly to suggest the relativity of connectedness.

Here we use the term “connected” in the näıve sense of category theory, so that the set of

components of a category X is obtained by applying the left adjoint of the full inclusion

of the category of sets (as discrete categories) into the category of categories; thus X, X ′

are in the same component of X if there exists a morphism X X ′ in X or in other

words, X ′ is “accessible” fromX. Alternatively, instead of taking the symmetric-transitive

closure of the accessibility relation, one could instead require X X ′ leading to smaller

“strong” components. The following general remark applies not only to näıve components,

but also to various refinements or limiting versions of the notion of accessibility. Although

a state category X p may have several components and thus appear to be a conglomeration

of state categories of several distinct materials, increasing the technology to p′ ≥ p may
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lead to qualitative change in the sense that in X p, it is possible to process one of these

materials into another one. We would like to consider the inclusion X p X p′ as a

morphism in the category of state categories and hence we do not make connectedness or

accessibility part of our general axioms. In the situation described the inclusion would

induce a surjective map from the set of components of X p to the set of components of

X p′ .

Now we temporarily ignore the duration structure to define the central requirement of

determinism. Consider a functor X π C in which we think of π(X) = C as signifying that

C is the configuration in which the internal state X manifests itself and similary π(x) = γ

signifies that γ is the deformation process which accompanies the internal-state-process

x. We require that π is a (discrete op-)fibration in the sense of the following definition:

Definition 6. A functor X π C is a (discrete op-)fibration if whenever C
γ
C ′ in C,

then for any X for which π(X) = C, there is a unique morphism x in X for which both

π(x) = γ

domain(x) = X.

Denote by γ ·X the codomain in X of this unique x.

Proposition 8. If π is a (discrete op-)fibration, then X1
x
X2, πX1 = πX2 = C and

π(x) = 1C implies X1 = X2 and x = 1X (i.e. the fibers of π are discrete as categories).

One has

1C ·X = X

and whenever C
γ0 C ′

γ1 C ′′ and π(X) = C, one has

γ1 · (γ0 ·X) = (γ1γ0) ·X

in the fiber over C ′′. In this way the category of all (discrete op-)fibrations with given

base category C is equivalent to the category

SC
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of all set-valued covariant functors on C.

Proposition 9. If X π C is a (discrete op-)fibration then π is in particular a “duration”

(I(x)
∼ I(π(x)) for all x) and hence the composite d π is a duration for X whenever

C d T is a duration for C.

Remark 5. We may refer in a general way to functors X Y as “outputs”, (which may

include the measurements of “inputs”) reserving the term “supply” to the case where Y
is an additive monoid and the term “response functor” for a situation in which both X ,

Y are equipped with duration supplies to the same T and the triangle

X Y

T

commutes.

A supply Q is said to be independent of path in case there is a codiscrete category U
(that is, one in which there is a unique morphism U U ′ for any ordered pair U , U ′ of

objects) and some pair E,∆ of functors for which Q = ∆E in

X Q.

U

Q

E ∆

It follows that the image of Q is a subgroup of the monoid Q.

A frequently arising situation is that in which a supply Q :X Q is absolutely

continuous relative to another supply S :C A (which is considered also as a supply on

X by composing with a given fibration X π C). This relationship involves the existence

of a response

X θ Hom(A,Q)

valued in a suitable category whose objects are additive maps (i.e. functors) from the

additive monoid A to the additive monoid Q, and is usually written

Q =

∫
θdS
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meaning that for each morphism x in X , Q(x) is “approximated” by∑
θ(Xi) · S(xi)

for finite partitions

X • • • X ′

X1 X2 X3

x1 x2 x3 x4

(x = xnxn−1 · · ·x2x1, xi ∈ Xi) which are sufficiently fine in the sense that

d(xi) ≤ S(Xi) i = 1, . . . , n

for a suitable positive function S on |I(x)|, d being the duration functor on X .

A constitutive relation over a configuration category C involves a pair

X Y

C

θ

π

where π is a (discrete op-)fibration and where θ is an output (response or supply). Some

aspects ηθ of θ may depend only on C in the sense that there exists S with Sπ = ηθ. If

all of the relevant response θ depends only on C, the state category X π C may as well

be reduced to C and we are dealing with one of the possible “elastic” responses C θ Y
whose configuration category is C. In general a survey of all possible constitutive relations

over a given C involves a range of possibilities for both the state category X π C fibered

over C and for the output. Let us consider separately some of the reasonable restrictions

on each of these two aspects. The restrictions on constitutive relations which will be

treated here are of a very logical nature and so provide at best a background for the

more profound restrictions on the second aspect in the study of which Walter Noll was

one of the pioneers. (I refer here to the derivation of equations of state from dissipation

inequalities.)
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For any given configuration category C whose duration is valued in either the natural

numbers or the non-negative real numbers, there is a natural restriction of a general

nature that can be imposed on state categories over C.

Definition 7. Let sh(C) SC be the full subcategory consisting of all objects

corresponding to (discrete op-)fibrations X π C which satisfy the following conditions:

Let C be a given configuration, and suppose that for every deformation C
α
A satisfying

d(α) > 0

we are given a state Xα of configuration A in such a way that for any deformations A
γ
B,

C
α
A, C β B for which β = γα and d(α) > 0 (hence d(β > 0) we have

γ ·Xα = Xβ;

then there is a unique state X of configuration C such that for all C
α
A with d(α) > 0

Xα = α ·X.

The above condition may be considered as a kind of “causal completeness”: if all the

possible “effects” α ·X (and hence θ(α ·X) for all outputs θ) for all α with d(α) > 0 are

coherently present in the state category X , then the “cause” x itself should also be present

and uniquely determined. It can be shown that the category sh(C) is a topos [5], since the

causal completeness condition is actually a “sheaf” condition with respect to a particularly

simple example of Grothendieck covering which is induced via the duration from the

positivity structure on the time translation monoid T. In the autonomous case, where

C d T is an isomorphism, sh(C) ∼= sh(T) consists, if T is discrete, of invertible “discrete

dynamical systems”, but if T is continuous, of possibly dissipative but semi-continuous

actions of the additive monoid of non-negative reals. In the general non-autonomous

case the duration functor C T induces an exact pair of adjoint functors (morphism

of toposes) sh(C) sh(T). Moreover, the categories sh(C) of state categories are quite

special among toposes even for arbitrary configuration categories C, as can be deduced
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from the work of Barel, Diaconescu, Freyd, Johnstone and Rosenthal (see Johnstone [5a]).

Theorem 1. For any configuration category C over a commutative monoid T with

cancellation, there is a topological space X (C) and a topological group G such that there

are topos morphisms

X (C) sh(C) BG

where the first is a surjective local homeomorphism and the second (to the Boolean

classifying topos of G) is “localic” (meaning roughly that sh(C) can be reconstructed

from an “internal topological space” with G-action).

For discrete time T = N, the space X (C) depends only on the graph

C1 = {γ ∈ C|d(γ) = 1}

and is a generalization of Cantor space and Baire space (which themselves are in fact

examples of X (C) for particular C). For continuous time, there is a second “skeletal”

inclusion sh(C)
i! SC left adjoint to the left adjoint i∗ to the original inclusion i∗; hence

sh(C) is locally connected, with a “components” functor sh(C) S assigning to each X
its set of components.

In fact, the conclusions in the above theorem require only the fact that all deformations

are epimorphisms in C (to obtain the local homeomorphic surjection from the space X (C))

and that every deformation is a monomorphism (to obtain the localic representation over

BG); the existence of the further left adjoint in the continuous case is at bottom due

just to the fact that every strictly positive duration can be expressed as the sum of two

strictly positive durations. This particular conjunction of properties is only beginning to

be studied in topos theory, yet in fact even our very general definition of duration functor

and configuration category implies still more stringent requirements on the topos sh(C),

for example, those arising from the non-existence of non-trivial isomorphisms among the

deformations and from the interaction between the causal completeness (sheaf) condition

and the plenitude of freezes. Thus not only the already existing general topos theory,
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but also an emerging special branch thereof, provides a powerful background for the

construction and comparison within sh(C) of the various possible internal state categories

which present the same configurational face.

A further condition on a state category C π C, considered in effect by Walter Noll [1]

as part of semi-elasticity, is that among all states above a given configuration C, there is

a unique one X which is relaxed in the sense that

f ·X = X

for every freeze f at C. Of course, such a state is in particular one which admits freezes

in the sense of the intrinsic structure of the category X with duration. Relative to a given

state category over C, one can define an elastic deformation in C to be any deformation

C
α
C ′ such that if X is a relaxed state with πX = C, then α · X is relaxed. For a

fibration π satisfying Noll’s condition, these form a subcategory Celast C containing all

configurations, and there is a functorial section λ of π over it

Celast C

X
λ

π

such that if ϕ is any section of d, ϕ actually has values in Celast, and λϕ is a section of

the duration d π of X .

Now a standard example of fibration over C is C(C0,−) for a particular configuration

C0; in considering this as a state category, those states which are of configuration C

are the “finite histories” C0 C which began at C0 and which end at C; the fibration

property is just the action by composition in C.

(Caution: In the case of discrete time this object is not in the subcategory sh(C) SC

and its sheaf completion must be considered instead.) The object

Hfin(C) =
∑
C0∈C

C(C0,−)

has as its states all the finite histories. The famous Yoneda Lemma implies the following:

16



Proposition 10. If X is any object of sh(C), there is a one-to-one correspondence

between functors of state categories over C

C(C0,−) X

and choices of a single state of X of configuration C0. Similarly, each functor of state

categories over C
Hfin(C) X

is uniquely determined by a function λ which assigns to each configuration C a state λ(C)

of underlying configuration C.

In case X has the (fragment of) semi-elastic structure given by a function λ assigning

to every configuration C the relaxed state λ(C) of configuration C, we thus obtain a

standard map

Hfin(C) X

C

λ̃

π

expressing one conception of how what is (German ‘Wesen’) results from what was

(German ‘gewesen’). Using topology, limits, and further conditions on X , it may be

possible to extend λ̃ to some larger subcategory

Hfin(C) ? H(C)

of the category of infinite histories (which are defined [6] to be sections T/0 h C of d over

the difference functor T/0 ∆ T); the inclusion of Hfin into H is defined using continuation

into the past by constants. Special interest attaches to those semi-elastic state categories

X for which the map λ̃ (or such an extension of it) maps surjectively to X , or at least

densely in the sense that within a given family of preferred “continuous” outputs, a pair

of continuous outputs agree on X provided they agree when composed with λ̃. Such

a condition on X seems to imply a drastic reduction of the range of possibilities for

state categories compared to the proper class sh(C). However, one must also consider
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the possibility of enlarging C′ C (the notion of configuration (and deformation)), for

example a purely mechanical C may be enlarged to a thermomechanical C′. Thus in the

extreme we could imagine being given only a fibration X T over the time monoid alone,

an autonomous necessity without any given notion C of deformation process. Deeper

knowledge of X may however be accompanied by the possibility of constructing a category

C of freely possible deformations, a fibration X π C and a functor H?(C) X which is

surjective or dense.

Let us now consider the second aspect of a constitutive relation, namely the outputs,

responses, and supplies (all taken as one here for simplicity). If the recipient category Y
for this has been specified, and also the configuration category C, then from a pragmatic

point of view the “only” role of a state category

? Y

C

is to account for observed correlations between processes in C and in Y .1 The above

diagram suggests that given only a pair of categories C, Y there is a universal state

category FC(Y) to which all others can be reduced insofar as output into Y is concerned.

Indeed this follows from the construction, recently utilized by Grothendieck in homotopy

theory [7], of an adjoint pair of functors

Cat SC
GC

DC

in which the left adjoint GC is the Grothendieck construction assigning to any set-valued

functor on C the total category of the associated (discrete op-)fibration; FC = GC ◦ DC is

the endofunctor of Cat which we seek.

1Of course the pragmatic point of view contrasts with the materialist view which considers that a

state category reflects the objective essence of the thing being studied, so will in particular remain the

basis of responses valued in undiscovered Y ′, etc.

18



Theorem 2. There is a fibration FC(Y) C over C equipped with a canonical output

FC(Y) ∈ Y to Y such that for any fibration X π C and any functor X S Y , there is a

unique morphism of fibrations

X FC(Y )

C

Ŝ

π

for which S =∈ ◦Ŝ.

In fact the set of states of configuration A in FC(Y) is the set

Cat(A/C,Y)

of all functors η to Y defined on the category of future deformations which start at A,

and the action is defined by composing functors

A′/C A/C Y
Σα η

with the functor Σα of composing in C with α. The canonical output ∈ evaluates a

state η at the object 1A of A/C. If Y and C are equipped with duration functors and

we consider responses S, a universal state category is again obtained by restricting the

functors taken as states to be responses themselves. If instead Y is a group, so that a

universal state category with respect to supplies of Y is sought, and if we exploit the fact

that each category A/C is actually a poset when all morphisms in C are epimorphisms,

then a universal state (A, η) can be considered as just a Y -valued mapping defined on the

set of all deformations starting from A.

The above theorem thus clarifies the status of the “definition of state” given by Banfi

and Fabrizio [8].

Combining the two extreme examples of state categories we have constructed, we can

construct a third.

Proposition 11. Given two categories C, Y , a map of fibrations over C

Hfin(C) FC(Y)
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is determined by specifying for each C an arbitrary functor C/C ηC Y .

The image of such a map in sh(C) is a state category over C with an output ∈ to

Y satisfying both of the requirements that the states are determined by histories and

distinguished by Y-outputs in the sense that if η, η′ are two distinct states of the same

configuration A, then there is some deformation A
α
B such that ∈(α · η1) 6=∈(α · η2).

The choice of ηC for each C must thus be justified in order to render the above image

construction of a state category for C, Y , somewhat canonical. Further investigation is

needed to determine whether a choice of the type made by Noll, based on further axioms

which relate a fading memory concept to relaxed states, can be characterized algebraically.

Buffalo,

May 1986
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