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State Categories, Closed Catecories, and the Existence

Semi-Continuous Entropy Functions

F. William Lawvere

At the Minnesota Institute for Mathematics and its
Applications in Summer 1983, M. §ilhavy and T independently
found very similar simplifications of the hywothesis reauired
to prove the 1974 general theorem of Coleman and Owen con-
cerninag the existence of upper semi-continuous entropy
functions for ceneral systems. My version, which involves at
several places the simplifying concepts of cateaory theory in
order to unify the subject with other branches of mathematics
in the hope of makinc the problems and resulte more widely
comprehensible, is described briefly below.

Consider a catecory :*C whose obiects will be called
states and whose morphisms will be called processes. In appli-
cations there will often be a functor }g:—:tza— ﬂ: to a
"lower"™ category whose objects and morphisms are (veneralized)

Lt
"configqurations" and "deformations" such that Il is a
Biscrete op-fibration", which expresses a kind of determinism
appropriate to open systems and which implies that the

norphisms ofy are expressible as certain pairs <G"{ P)



where { is an object of J@T and Fj is a morphism of d:r.
However, we will not use thiz extra structure, since discussion
of that part of the interaction with the environment of ;5&:
which 1s expressed by the entropy supply can be made independent

J s ; i
of i1t. We also remark that in applications the category .._-SL
{and d: ) often has the unusual conjunction of properties
that all morphisms are both monomorphisms and epimorphisms
(i.e. left- and right-cancellable), but onlv the identity
morphisms are isomorphisms (this would follow from the existence
of a faithful embedding of Ji:iintn a category of paths, with
continuation as composition). But again we will make no use
of this property of ;gii. Thus 3%? is simply an abstract
catecory, except that presently we will assume that the set of
objects of :Ei-is endowed with a topology.

We will need two other categories, of a very simple
concrete nature. Recall that any monoid can be considered as
a category which has onlv one object and whose morphisms are
the elements of the moncid, composition in the catecory beinc
the aiven monoid operation; we will apply this construction to
the additive moncoid I}% of extended real numbers. (This makes
sense, as will be clarified below). Were we to consider heat
supply rather than entropy supply, it would be appropriate
to consider instead an additive moncid of signed measures on
& hotness manifold.
The second kind of concrete category, intimately related

to but completely distinct from the first kind, is that of a

(=]

closed poset. Recall that any poset (set eauipped with a



reflexive and transitive relation f; y may usefully be
considered as a category whose objects are the elements
of the set and whose morphisms are the pairs<51,q$> for
which qi £QL ; for example the poset 1]3 of all extended
reals with the usual order (or a set of signed measures
onh a hotness manifold, ordered using some judiciously
specified cone of measures) will thus be construed as a

category. For the "closed" structure of t} see below.

o IR

A functor

will be referred to here as an entropy supply. Since in
has only one object, we must have /ﬂ(x;)z,d(ki) for anv two

states X4 X, . The functoriality of . wmeans that

fd(i )= O
a(P-B:a(P)sa(P)

for any two composable processes }ﬂz—:Eber )ﬂi ------ -—é?}(a

and for the identity process .i;{ ("freeze of duration O ")
of any state X . A function S defined for the objects

o % will be called a ("naive”) entropy for & iff

S (x¢)+ A {P) £ 9 (sz Lo QL'L ;,E-Eaxé
i ¥ !

or briefly (é S versiaon)

442 AS



- 4 -

where 4\ (S)(P) d*_éF S((,odOm P) i S{dom P)

makes sense with the judicious definition of subtraction
below.
The entropy functions which we will construct will

actually be representable {(in the sense of Grothendieck}) .

First we will consider the ("naive") case of M-representability,

where for any two states X,l,xz) we define

M(x,i,xz) — AUP{A(P)(Xi sz " X}

0f course, any empty sup is —oo. Then
P
0 £ M(x.x)

for each state, and

M (x,, %)+ Mx, %) < M (x,, x,)

ol A

Proposition The followina are equivalent
1) = M(K;XJ
) M{xx) < o0

Q (The “"naive" Clausius property)
’.1(P) '—4' O for all endomorphisms P of X in X .
For D= M(X,x)is easily seen to satisfy l‘::-i-b =JD , and in
our case of one-dimensional (\f , this implies b:O or .!D= 8.2

. < : . .
since O = b . Endomorphilsms in X are often called cyclic

processes.



Proposition If we chose a state KO and define for any X
S(x) = Ml x)

then ES is an entropy function for the supply 4 that
was used to define th.

It is apparent that the fundamental transformation rule
relating addition and subtraction which is used to cbtain
the AS version of the last proposition is the logical

equivalence

Q+b -
Q€c-b

which in terms of the category JLP meang that the functor

()= b is right adjoint to the functor ( )+b . This

situation appears in all branches of mathematics and is
called a closed structure on 1/3, with (in our present
example) + as the @ and () - () as the Hom. Perhaps
the best-known example has for TJ: the category of vector
spaces where the usual @& , Hom enjoyﬁfor any three vector
spaces a, b, ¢ lithe natural bijection bf sets of linear

transformations

o ®b-—c
& maeon Bty o |

It is also reguired that Qg) be associative and commutative
(in a suitable functorial sense} and have a unit object
(the space of scalars in the vgctor space examnle and O in

the real ﬂjﬁ example) .



we can define *
f U
a" = Hom la, uni
and in any closed category derive a canonical natural
transformation

Kb — Hom (a,b)

which in the case of U: [" o° 0"] means

(-a)th € b-o.

This natural transformation is not always an isomorphism;
in the case of vector spaces 1t is an isomorphism for all
b iff Q is finite dimensional. Fven in the case of the
extended reals, the binary operation of subtraction is in
general distinct from the indicated composite operation,

In fact, we will have
\q/bf-,{w[-qﬂo - L:a—c:aj

iff - o0 £ Q < o2, To calculate the two sides of the

inequality 1in case ¢3 = * oo note that

e Fc-w all b

(including bz06o ) since the &) functor ( )-I—b , being a
left adjeint, must preserve all lim{, i.e. in this case all

sup’s , including the empty sup. Thus (- oﬂ)+ oo = = (.

On the other hand, as a special case of the @ , Hom adjoint-

ness we have for all Q, 6 C



( £ 00- 9
a+C = oo

But the condition below the line is true for all 9, C:,

hence Cf Ooo-Q for all C , that is
oo - 4 = o0 Fm— all a.

Thus the ineguality

—a+b< b-a

is strict for Qe=dae and b,—_—o-o since then it just be

5

B
£

mers
<

Similarly one can show
- O rF b = ©o

+ 00 if b> =02 b—(-'?@):ao‘r

To sum up, the reguirement that V’: E’ﬁ’,ﬂﬂj be & closed

s, Y

category (for the usual notiocn £ of morphism and a

tensor extending the usual 4 ) forces the rational definition
of the two binary operations of addition and subtraction
which satisfy the adjointness transformation rules {more
general than beino inverse, which is not possible since
groups cannot contain idempotent elements) which are needed
for our application {and many others). Note that if morphisms
were defined to be :E instead of % , & different meaning
for (..'.‘: w}f{i oo} would be forced; the resulting closed
category of reals would be appropriate as a basis for a

theory of metric spaces, rather than "entropic spaces" as

here.

allb



Clecsed categories are not only important as such, but
even more as a basis for the thecryv of Tja—categories,
qjo-functors, and rUarnatural transformations. For example
with qj?= vector spaces, one has linear categories, linear
functore, linear natural transformations which are widespread
in analysis, aloebraic topoloay, homoloaical algebra, etc.

In general, if lU:) is a closed category, a bm-cateqory ig
any structure consisting of a set,zi of objects, a 1/QLobject
bﬂ(%5|%£)for each pair of objects from :ZZ , a "unit"
TP -morphism
unit.bp — M (X,X)
for each object }( , and a "composition" QﬁlmorphiSm

M(Xo,xi) 0% M(Xd_rxz) e M(’*’mxz)

J/
for each triple of objects; these are subject to unital
and associative laws which need not concern us here since
they are automatic when 1j° is a poset. R q/ifunctor

(X M — (?X M is any pair of mappinas aqqlc:rvlnq

an object EE(X) of to everv object X of >< and

< fiepkien dn W

M, Xy ) —2% M'(S(K, ), S (X,)

Ior—
to each pair [3( r>q&) of objects of DK , satisfving
certain axioms concerning preservation of unit and compo-

sition; in case ?jg is

a condition on the first:

i

poset, the second mapping reduced to



= B w

MK, X, ) £ M'(S(x,), S(xz)) n V

and the axioms are automatic.

Tautoloagy If A dis an entropy supply functor, on an

ordinary (Set-valued) category X ; then
: v P ..
M (X, X, ) = sup ”i()lX’ = 5y

e
defines a [-m,oaj -valued category structure on the set X
of all objects of K . Moreover an entropy function S

for A& is exactly a rl/, functor

S 2 —= {1
where w:gwr‘f?itself is made into a qﬂ—valuec‘: catecory

-

in the standard way with help of its Hom:

(U’Ca, E) = }D‘-Gl

On any non-empty ?f"—cateqo:rg there are many
fUD—fmetors to ?ﬁ , because there are the representable
\ > ':EL/“ 2
ones M(XQ’“JI< |M —> for anv >\DE . In our

case this representable entropy will have its wvalue at Xo <0

iff 4 satisfies at Xo the ("naive") Clausius property
and in that ca s: its value at any X will be bounded above
i T % .' ; which will in turn be finite provided
J o)
/

~8 itself is Finite valued and H){*}) X-:‘:'

Proposition M( —-)1*—“ he smallest among all the ("naive")




i

/
entropy functions S for which @ = S {_Xa)'

Proof This is a special case of the Cayley-Dedekind-
Grothendieck-Yoneda lemma, which states that for any uvalued
'lf:*gunctor S on & V—category _>_<_ EManﬁ any object
XQE‘Z , there is a natural bijection

un}&v ik 6 X )

M(X,,=) — D
between the set of 1f°-mo.rph15msunitlpr——-—-§ &/.Yo)and the set

of cUﬁ-n.Eutu:ca1 transformations M(XM—)—)Shetween the two
indicated c\ﬂ—?umﬁ:ors < X: M>2 tV’

Now we can move from the "naive" theory to the Coleman-
Owen theory. Assuming that the set X of states is endowed
with a given topology, they introduced the idea of a
(Coleman-Owen) entropy function S which satisfies two
further conditions

1 S is upper-semicontinuous

2) The supply of entropy for any process whose domain
is xi and whose codomain is sufficiently near X& is

approximately bounded by A S :

ve>olWs X, YxeW Vx, X
4 (P) g SP)-SK)+€,
(where W denotes an open set) or in other words
ve>owsx, VxeW
M(x, %) € S(X,)- Six, )+ €



or in still other words

mX,%) € S (X ) = S (%)

where

e e
W3 X, x& W

They alsc introduced the strencthened (Coleman-Owen)
Clausius condition on the entropy supply functor A that
approximate endomorphisms should have approximately negative

supply: for a given X,

ve>ojusx, Vxeu Vxstox <P/ €€

or in other words that
ve>o Juex, ¥xev  M(x, x) <€
or in terms of the ML defined above §imply
mfxo} xo) = O

Now the above definition of %M is nothing but the
standard upper-semicontinucus regularization (in the second
variable) of FV1 . Thus each function.?n!&;‘ —).is auto-

{

matically upper-semicontinuous, and thus by our previous



calculations will be a representable (Coleman-Owen)
entropy function for .4 if only we can show that <§,m>
is again a ‘lftcateqory. Moreover, it will wvanish at ){
’ 0

with the resulting boundedness nroperties at all >(
from which ); is approximately acceq51blo if the
{Coleman-Owen) Clausius property for A8 is true at ><

Thus (in effect followina Ceoleman and Owen) we
will concentrate on the cuestion of whether(i,l’ﬂ) is a
U’—mltegory, The cendition Uém(x,if)is clear, but for
the "composition" law (reverse triancle inecuality) we
need an assumption. In Coleman and Owen 1974, conditions
of accessibility, continuity of the action, and continuity
of the supnly were combined to obtain the desired result,
but these continuities are with respect to variables which
we for clarity have suppressed. It is possible to prove
this central result without any assumptions of accessibility

i I

or finiteness by avoidina use of the +€, method for
provino statements of the form Cqﬁ sug EJ and by taking
as fundamental hypothesis the following Semicontinuity
Axiom for X—-‘T’R Tf €>O and m(xd ) -

and 1if ﬁmr is a neighborhood of Xé_ , then there exists a

neighborhood \/ of X'i such that for all Xf_'ﬂ there

exists a process P startinc at X and endina in LV for

which

(x,i,xz) ¢ 5 (P)+€



Remark The semicontinuity axiom would follow, provided

relevant guantities were finite, from the hypothesis that
=

for any X '—-—*gﬁwthbre is Gp(.n%}(i such that

for all }(E\! there is X———» EEK’V (for some ¥ ) such that

V -’J(P)-‘:- A(S)f-%

For we could (by implicit finiteness) chose P with

£
HS‘LUP M(x,,y) £ s(P)+ 3

In the Coleman-Owen 1974 work, more was (in effect)

for which "S(P,) m (X XL) 15 could be chosen with
'S(P) (P) but moreover that li(P) and II[‘P) should

have the same time derivative, for X——«—-—} (I: a rele-

required of the P ab(}v(:- TOUGhlI‘)f that for a P; Xfl ;%EW

vant fibration into a path cateaory, as previously alluded
to. Though such further properties of P are both
realizable and useful in many examples, they do not seem

to be relevant to the narrow issue here beino considered.

In other respects our proof follows theirs (p. 12 and p.21)



Theorem If x-——-}IR satisfiles the semicontinuity axiom,
then X,m is a ?f-cateqory, where 2/,=~ [__- &0, 05‘_7

and

(X,X):: IHF U P)
m Xy Xy, 'W%,XE‘ ;g\f/_ ;4—%3 4 (

By Yoneda's Lemma (for posets)
a€bdé= Ve l[béc=>atc]

Thu way to prove o] é SV I!D' is to prove
Y [[\7{, Bj{‘.‘f c::” —> a=c
(since SUP{ b}L & C=) V:_ﬁI [bu é(.’.J)
SN 3

Assume given any neighborhood W of XZ and any C £ l/j

for which

™M (Xo}z) = for 211 FE N



It must be shown that

m[XM)(,l)-;-m (Xg:%,) € <.

This 1s of course trivial if C= O or m(b(f,.\’z)z -0,
so we may assume C < ©oe and that there is Q >~ 0¢ for
which
G = Sg M ('X ' lé)
{

Thus in particular we may assume that EIJEWJX i [j
4
hen from the axiom there exists a neighborhcod v of X‘.‘n‘.

having the there-specified property.

Now consider any Xﬁvand any process X_i—-EaX. By the

property of V there exists [for any e'?oj EEW and
b

— Z such that

m(x,ilxz) ¢ 5(P)+€

———
Since P and P can be composed, we have

s(P)+4(P)=s(PP) £ ¢

since Ef:\//-and dom Cﬁ E’) =dom(§)=>(a_ THus
’5(}5)"1"”’“ (\x,pxz,) £ 4(5)4— /5(_5) + &



= qK. =

Since the specific X has now been eliminated from the

second term, we have

S(P)em (X, X,) £ C+€

for any E such that dom (_5)::-' )(G, codom(ﬁ) E,V-, Then

MR Kem X, %) £ Co E

for all XE.V, and hence

am (X, X, )+ Md(xai;rxz)) £c+€

but this holds for all &>, 0ED.

q—
As for the choice topolooy on X three remarks can be

made. If the (naive) Clausius property holds for £ , then
- ) agr MO ) Mlgx) & M (x4 O

defines a semi-metric on _)_(_ ; whereas if (stronger) !M[{ OD’

S(x 'j) = hqax(-—M(X, 'g), "M(f{,")

defines a semimetric on X with respect to which S = M (xol h)

itself (without passing to #M ) is even Lipschitz, so
certainly upper semi-continuous [See Coleman-Owen ARMA 59,

1975j. For more on the relation between enriched functors

and Lipschitz maps, see Lawvere 1973.



In case there is a given (discrete op-) fibration

i
5&:——~¢-G: to a category of paths in a configuration space,
there is usually a nonnecative duration functor C —-'—:*FR

which by composition induces a duration or "{recuired)time

X > TR

Now if dur is any duration functor and )a\ is any subset of

supply" functor

the set of objects of the domain catecory, we could call /\

"olosed" iff for any morphism F: in the domain catecory, the

set of all 't for which

15 5 [p5-p, dur()-t, codom (A

is closed in [CQQUI'(PII Tn most examples where the domain
category 1is an ample category d: of continuous paths in a
(yeneralized) configuration space, this definition recaptures
the original topology on the latter space. But when dur is
the (induced) time supply functor on a state cateany:}%: ’
precisely the determinism of the constitutive relations
expressed by the fibration property will usually prevent

—
the class of those paths in 2§ associated with morphisms
in j&{ from beina "ample": nonetheless the above definition

of closed set gives a topology an ES which it may be of

interest to investigate, In particular, in what way must a



given entropy supply functor -3 be related toc a given time
supply functor on the same category in order that the above
semi-continuity axiom be verified relative to the defined
topology?

Finally, since the key original motivation for the
introduction of topclogy, approximate accessibility, stable
Clausius property, etc. was the example of materials with
memory in which ;R( is (discrete op-) fibered over Q: by
virtue of its objects being "histories" in d: , it may be
significant to observe that in many calculations regarding
such examples, it is not so much the global open sets of 2$
which are involved as it is the topoloay restricted to a given
fiber ->-<C (= all histories which end at a given ob:'peth«f([:):
possibly this observation could lead to an even further
weakening of the semi-continuity axiom and to a narrowinc of
the weak approachability situation ™ CX;,%E);>'“09 in which

the axiom needs to be activated at all.

References

Coleman B., and Owen D., A Mathematical Foundation for Thermo-
dynamics, Archive for Rational Mechanics and Analysis, 54
(1974) 1 - 104

Kelly, G.M., Basic Concepts of Enriched Category Theory
Cambridoe University Press, London Mathematical Society
Lecture Note Series 64, 1982

Lawvere, F.W. Metric Spaces, Closed Categories, and Generalized
logic, Rendiconti del Seminarioc Matematico e Fisico di
Milano, XLIITI (1273) 135-166

=
=
i
=2



