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INTRODUCTTION

The articles collected in this volume reflect talks given at a
workshop on Category Theory and the Foundations of Continuum Thermo-
mechanics which was held at S UN Y Buffalo in May 1982. The work-
shop permitted the beginning of more extensive exchange of ideas between
groups of researchers which had previously had very little contact.

W. Noll and W. Williams discuss here the foundations of the theory of
material bodies, in particular the current status of Cauchy's stress
theorem, while B. Coleman, M. Feinberg, R. Lavine, and D. Owen describe
general contexts in which the existence of temperature and entropy have
been established for rapidly deforming, unequally heated bodies. In ap-
parently different directions, K.T. Chen and A. Fr8licher discuss sim-
plification of the foundation of infinite-~dimensional differential geo-
metry, as do A. Kock and G. Reyes with special attention to the axio-
matics of that subject as a whole and to the variety of useful models

of the resulting theory. The geometric theory is necessarily categori-
cal, and I want to indicate below some of the advantages which may re-
sult if the abstract structures arising in thermomechanics are also
explicitly recognized as categories. First I will indicate some of the
reasons why a flexible geometric theory is demanded by continuum physics.

The mathematical background for theories of geometry, analysis,
and continuum physics is usually considered to be the category of topo-
logical spaces or the category of Banach manifolds, with of course an
infinite gradation of smoothness conditions needed (apparently) for
various technical theorems. However, an essential construction in con-
tinuum physics is that of "function space", and the lack of well-behaved
function spaces in those categories obscures the simplicity of geometri-
cal or physically-motivated constructions and axioms. Yet, two centuries
ago, many problems in the calculus of variations were correctly solved
by mathematicians who, rather than defining a notion of "open subset"
for their function spaces, took the notion of "path" as basic. Recogniz-
ing the great importance of contravariant concepts such as open set (or
real function) does not commit us to take these as the defining structure
of a notion of space-in-general; they can be derived concepts in a theory
where the covariant concept of geometric figures of some basic types,
such as path, tangent vector, etc. are taken as primitive; theories of
the latter kind can easily be constructed in which the unambiguous
function space construction with good properties exists. It is with the



construction of such categories that the articles of XK. T. Chen,

G. Reyes, and A. Fr8licher are concerned. The "“figures" used by Chen
are called by him "plots", extending the less functorial charts of the
usual atlases. Another significant aspect pointed out by these authors
is that working in a category of smooth morphisms does not at all re-
strict one to considering only smooth subobjects in the usual manifold
sense.

More precisely, Chen and Fr8licher study two specific categories
in which profound basic theorems about the smooth real line are used
to construct notions of space which encompass many necessary examples
that are not Banach manifolds, and are far simpler to describe from
first principles than is the latter notion.

Kock and Reyes emphasize the axiomatic description of such cate-
gories as a whole. Axiomatizing a category as a whole promises to be
part of the simplest approach to certain calculations. One exploits
the discovery of Grothendieck that once the covariant "figure" attitude
toward spatial objects is adopted, not only function spaces but also
several other mysterious notions become easily manageable, such as in-
finitesimal paths, the spatial structure of the "set" of all linear
subspaces of a given linear space, etc. Moreover, a "category of all
spaces"” can be construed as a "gros topos" which implies that fibered
products and quotient constructions have exactness properties similar
to those in the naive category of abstract sets but lacking in the
usual categories of topological spaces or manifolds. The axiomatics
at the category level is also valuable because there are many related
categories which immediately come up. For example, if JG¢ is a gros
topos of spaces and G is a group in DC' while S is an object
of QC' then the categories QQ/é of S-parameterized families of
spaces, QCG of actions of G on spaces in ‘DC , and QCG/S (of
central interest in bifurcation theory) are all categories which satisfy
the same axioms as QC , as does (a reasonable determination of) the
category of all objects of X, equipped with affine connection.

Let me be more explicit about the role of the cartesian-closed
property of a category (a topos is a cartesian-closed category in which
moreover the notion of subobject is representable by a "truth-value”
object). Let E denote ordinary physical space, T a space which
represents the notion of time, and B a space which represents a
particular body. Then a particular motion of B may be represented

as a map .
B x T ———————

which is the correct way if we want to compute by composition how part-

icles of the body at various times experience the values of some field



defined on space. However, it is also necessary to construe the same
motion as a map

T———)EB

where the space B of (possibly singular) placements of the body is
itself independent of T or a particular motion, if we want to compute
by composition the temporal variation of quantities like the center of
mass E°——E of B . Still a third version

B—-—-—-——)ET

of the same motion, where the space ET of paths in space exists
independently of B , is a necessary step if we want to compute by
composition the velocity field on B induced by the motion. The
possibility of passing freely among these three versions of the "same"
map is obviously more fundamental for phrasing general axioms and con-
cepts of continuum physics than is the precise determination of the
concept of spaces-in~-general (of which E,T,B are to be examples), yet
these transformations are not possible for the commonest such deter-
minations (for example Banach manifold). The general possibility of
such transformations within a given category is called cartesian
closure; a category with finite cartesian products (including an
empty product 1) is cartesian closed if for any two objects A,Y there

A

is another Y such that for any object X there is a natural bi-

jection

X-———--——)YA

AxX—Y

of maps ( = morphisms in the given category). In particular any func-
tional Y:—=2Z when composed with any I—sy? gives amap I—> 2.

A lemma proved by Grothendieck and by Yoneda (and in special cases by
Cayley and Dedekind) says in effect that an object in a category is
entirely determined by all morphisms into it from all possible objects.
But in many categories there is a small set of objects such that
morphisms from them alone into an arbitrary object determine the latter.
Such special objects I might be called generic figures, and morphisms

I—X>x particular figures of type I in X . If the I's are

. . f
adequate in the sense [Isbell] just alluded to, a morphism X-—=—>Y
is determined by the abstract mapping xt— fx of figures in X
into figures in Y ; and more importantly, such an abstract mapping

is "smooth" (i.e. comes from an actual morphism X ——— Y in the



category) if only it is natural, i.e. satisfies the property

f(xa) = (fx)a for all I'—25I between figures only (one might say
that the mapping preserves generalized incidence relations). Such
reasoning is sufficient to rigorously support the calculations of the
Calculus of Variations, taking intervals as the adequate generic figures:

to discuss the smoothness of a purported functional

it suffices to check its compositions with all I—Y 5yh , but the

* %
latter are equivalent to A xI-—Y>Y which are of lower type. )

Since the v are the origin of the term "variation" in "Calculus of
Variations" we may say that the combination of the notion of cartesian
closed category with that of generic figure to yield a determination

of "space-in-general” is a natural development of those 18th century
ideas. For convincing substantiation of these apparently simple-minded
remarks, see the work of Chen and Fr&licher.

In the articles of Kock and Reyes an important additional feature
is the consideration of further generic figure types such as D , the
tangent vector. This object is explicitly definable in terms of the
smooth line R , as the subspace of R consisting of all t € R for
which t2 = 0 . This object D can be non-trivial without changing
the morphisms RY— Rm, which remain the usual smooth maps (or the
usual analytic-or algebraic maps in other models of the axioms). In
fact, D can be big enough that

RD<—JL- R »R

in the sense that every smooth function defined near O restricts to
equal a unique affine-linear function on D . Identifying the function
space xP  with the tangent-bundle of an arbitrary space X 1in the

D

category, a vector field X ——X becomes equivalent, via the funda-

mental transformation, to an action
DxX ——> X £ (0,x) = x

£
of D on X . An obvious way for such to arise is to restrict some

flow (action of the additive group of R )
R ¥ X — X

**) The smoothness of morphisms whose domain is a product A x I can
be analyzed by testing against arbitrary I ———A xI as is further
explained in Frélicher's article.



from R to D , such restriction defining an instance of differentia-
tion. This gives rise to a pair of adjoint functors
De ) g
Vector-fields =X ", X, = Flows

where the right adjoint to differentiation takes X,¢ to

HomD(R,X)

the space of solution curves. The adjunction map of flows, evaluation
at O , is an isomorphism when the vector field given on X satisfies
the existence and uniqueness properties as an ODE. It is worth pointing
out that the definition of morphism y in the category ;&P of vector
fields, namely commutativity of

D x y
DxX —e——e—— 3 DxY

£ n
X " > Y
is equivalent by the fundamental transformation to commutativity of
xP ¥ > P
g I
X m > Y

which makes sense even in the usual category of manifolds where the
tangent bundles are not function spaces in the way they are here. To
deal with non-autonomous flows, the monoid R can be replaced by a
suitable small category whose objects are instants of time.

Some fundamental concepts of continuum physics can be formulated
in such categories before determination of which category is most appro-
priate for special calculations, or even in some cases before distin-
guishing between vector fields XP and flows XR . For example,
Muncaster's clarification [Muncaster] of the general problem of de-
riving coarse theories from fine theories is (backed up by his study
of several key cases) in essence the following (with M = D or M = R):
Let X be an object of fine states equipped with a dynamics, i.e.

X E IM with action ¢ , and let Y €J, be an object of coarse

states with an J¢6-map X—'~—>Y (often an averaging process of some
sort). It is desired to find dynamical actions n on Y which are
somehow compatible with ¢ and w1 , but experience shows that this
should not mean that 1w becomes an Dcwa morphism for the choice of

n ; ® may preserve balance laws but not constitutive relations,



both ingredients being involved in specifying n . Call an M-action

n a non-linear "eigenvalue" of ¢ (with multiplicity Y ), if we

can find an injective M-morphism G (in the direction opposite to w )
lM *x G

MxY————M X

Gn = EquG)

X e/ X
Y

n
Y >
G
where such G could be called a non~linear "eigenvector". A gross

determiner is such a non-linear eigenvector which (interprets coarse
states as special fine states as above and) satisfies the constraint

o G = lY (which of course forces G to be injective). It is to be
expected that there may be many such eigenpairs n, G for a given fine
theory X,& and given "averaging” = to coarse states Y ; but the
gross determiner G uniquely determines the coarse theory =n (as with
the usual linear eigenvalues).

The adjointness above (between differentiation of flows and so-
lution curves) actually holds for any change of operator domain (like
D& R), for example for the change 1__5L,N , where 1 is the trivial
domain and N 1is the additive monoid of natural numbers. An N-action
is equivalent just to a single endomorphism thought of as the change

of state in one time unit. The adjunction in this case

forget action N

x-’f

¥

( )N

is simply this: 1if Y is any object, then the object QN of sequen-
ces in Y has a standard action usually called "shift". If X 1is an

object equipped with any endomorphism ¢ , then an equivariant map
x — N
is entirely determined by an ordinary map

X —¥ 3y

(namely p(x) = E’(x)o) through the formula

Vox) = v (£%x) all n ,

and for arbitrary ¢ , the ¢ so defined is in fact equivariant. This
is sometimes referred to as "symbolic dynamics", Y being considered
as blocks into which X is divided by ¢ , and the 7§ thus assign-
ing to a state x the sequence of blocks through which the dynamics £



takes x . In case Y 1is finite, YlN is a Cantor Space in ;&: .
The basic concept (which can be further ramified) of the currently
popular "chaos" is that of a morphism ¢ for which the induced Vv to
the right adjoint is surijective (i.e. ¢ observes so little of the
states x that any given sequence of blocks can occur for some choice
of x ).

The important distinction between intensive and extensive
quantities can also be exemplified in any category J of the kind
under consideration. While these terms, of philosophical origin, are
costumarily employed only in thermodynamics, (contrasting temperature,
pressure, and density with energy, volume, and mass), they are actually
applicable throughout continuum physics and indeed in mathematics
generally. While their importance is most evident when interpreted
relative to a given body B , it is useful to consider intensive and
extensive quantities relative to any space X . The existence of
this philosophical terminology is moreover fortunate because terms
like "Radon measure" , "Schwartz distribution" , "singular homology
class", etc. prejudice the issue in that they are but realizations
of the general notion of extensive quantity resulting from various
particular determinations of the spatial category o{ . If we suppose
given a ring object R in JC then a basic notion of intensive quantity
relative to an object X 1is that of a morphism X — R . Thus RY
is the space of intensive quantities on X . Two distinguishing

features of intensive quantity are contravariance: there are

RX4——~— RY

induced for any X —> Y , and multiplicativity: RX is again a ring

object (not just an R-linear space) and the foregoing induced morphisms
Rx - RY are ring homomorphisms (not merely R~linear). By contrast

extensive quantity M(X) should be covariant:

M(X) — M(Y)
[N
exists induced by any X ——ie-Y and is linear but not multiplicative.
(A ring structure on M(X) can often be defined via convolution if X
is a group or monoid, but not if X 1is just a space). However, the
linearity of M 1is stronger than just R~linearity in the sense that
M(X) 1is actually a module over the ring RY and the induced maps

M(X)——> M(Y) are linear with respect to that, i.e. for X —E—e-Y

yi(g yem) = gep!(m)

for any gERY , mMmEM(X) . Moreover, there is a pairing



r
R x M(x)—%> R
between intensive and extensive quantity which satisfies naturality

equations when X 1is varied, and
fxfd(gom) = fX(fg)dm for all £ .
All these listed properties of M follow easily if we simply define
. X
M(X) = Linp (R",R)

the space of ;X:—smooth linear functionals, where in general LinR(V,W)
is the subobject of wv defined by the linearity equations, for any
R-linear spaces V,W in X, . Then f is simply evaluation and the
module structure is defined by the above fg equation. This definition
of M can be proved (in all the categories considered by Chen,
Fr8licher, KXock and Reyes) to coincide with usual distributions with
compact support, even though smoothness in those categories is defined
covariantly in terms of generic figures rather than contravariantly in
terms of open sets or seminorms. In other toposes it would agree rather
with topological or abstract measure theory. The module structure ex-
presses the important concept of density: 1f m,v are two quantities

extensive with respect to the same space, then

dm _

dv
simply means that , is an intensive quantity such that m = pev for
the module structure. Leaving to particular determination of the cate-
gory the question of precisely which pairs m,v admit such a o , we
may observe that its "uniqueness" (in a natural sense) is tautological:
if

v = v , then (pl —02)-v =0 i.e. 1 =0y modulo v .

p p
1 2
It will be seen that the covariant functoriality of extensive quantity
is an essential background feature permitting Feinberg and Lavine's

passage from states to thermodynamic states and Schanuel's passage from

the size of a potato to its polynomial measure on space.

The categorical striving for unity and simplicity may also lend
clarification to problems of continuum physics in another way. Beyond
the background questions where the nature of categories like spaces-in-
general, flows-in-general, etc. is studied, there is also the observa-
tion that, like many other branches of mathematics, thermomechanics
deals with structures which themselves may sometimes usefully be seen

as ("small") categories. The article by D. Owen is a case in point.



The general theory of thermodynamical systems developed by him and
Coleman has features equally applicable both globally to a body as a
whole and infinitesimally to body elements, and so there arises the
crucial problem of "integration", i.e. of understanding how the body
can glue the infinitesimal thermodynamical systems to obtain the global
one, Owen proposes to approach this problem through the notion of sheaf,
that is, by studying a certain kind of functor from a category of parts
of the body into a category of abstract (or topological,or bornological)
thermodynamical state—-and-process systems. I am convinced that this
line of thought will become important. I will comment separately on
both the category of parts and the category of systems, with special
reference to the utility of considering the systems themselves as
categories.

The theory of parts of a body, discussed as a necessary preliminary
in the articles of Noll and Williams, naturally concentrates on the
subbodies (which might with luck form a Boolean algebra) but also must
take account of boundaries (which are not sub-bodies). A convenient
algebraic structure which includes both these features is that of a
cartesian-closed partially-ordered set in which " ——> " is thought of

" =2 " and hence "cartesian product” becomes |J while "exponentiation"”

as
becomes a binary operation akin to subtraction, which is characterized
by

A=2c\s iff A|JB=2C

The resulting algebraic system may alternatively be described as a
lattice admitting such a subtraction; the subtraction is unique if it
exists and its existence implies distributivity of the lattice opera-
tions. The system of all closed subsets of a given toplogical space
is a typical example to keep in mind; the subtraction operation in that
case is forced to be the closure of the set-theoretic difference.
However, examples not of that form arise in various parts of mathematics,
and it might reasonably be hoped that models of bodies which involve
entities more (or less!) sophisticated than closed sets would still
admit the structure here discussed. If 1 denotes the whole body, then
we can define

~A = 1\A

as a special case of the subtraction; ~A 1is thus characterized as the
smallest object in the system for which ~AU A =1 . One always has
~“(Af] B) = “AU~B , but it can happen that ~(A U B) # “A N “B;
however ~%(A U B) = “WA|JVWB always holds. Then

A & A
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is the regular core of A , so that, with Noll and Williams (and
Tarski), we may consider a part A of 1 to be a sub-body, or simply
a body, if and only if ~nA = A . But in such a lattice we may also
define

3A = A [} A

and consider this as the boundary of A 1in the sense of the system
considered. That the notion of boundary is just that of "logical con-
tradiction" (within the realm of closed sets) follows at once from

the intuitive notion of motion: indeed, since the unit interval is
connected, any continuous path which is in A at time O and in ~A
at time 1 must at some intermediate time be in both A and ~A ,
i.e. must pass through the boundary of A . Independently of the
motivating example of closed parts, a great many useful identities

can be proved in general for any lattice which satisfies our axiom of

subtraction. For example

A= ~dAlU 5A
for all A , and (as pointed out by R. Flagg)
3(AN B) = ((3A) M B) U (AN 3B)

for all A,B . The latter "Leibniz formula" is remarkable in that,

although it is pictorially obvious

9

and easily proved algebraically from our axioms (or in particular from
the definition of closed set), and although similar formulas are well-
known for more sophisticated objects such as currents, etc. the fact
that it is true for ordinary boundaries of ordinary closed sets seems
to have escaped the authors of textbooks on general topology; indeed
the only source we could find for it (for which I thank G. Rousseau)
is a little-known article by M. Zarycki (Fund. Math. 1927). Also
evident from the above picture, and valid in any system of the kind

under discussion, is
3 (A U B) UB(A”B) = BAUBB

so that in particular
AUB=1:$8(AOB)=3AU B
(3A))B=0=AMN3MB—> 23(AUB) =2al 3B



11

Phe special parts which are boundaries form an ideal (of “nowhere dense"
parts), whose elements can also be characterized by many alternative

equations, for example
A = A, or A =1, or avA = 0, or AUY-C-NAUY

for all Y . Note that 3vA = 3vvA 1is in general smaller than 3A;
equality of all three can hold only if A is a body.

A crucial relation between sub-bodies is that they be separate,
or equivalently that they be (at most) in contact. For ~~nA = A,

vwB = B, the following possible definitions of this relation are

equivalent:
B ; A
WA = B
(A f1B) = ©

AfB = 3N B

By an interaction is meant a function H (in general vector valued)
defined for separate pairs of bodies and such that H(A,-) 1is additive
on separate pairs and likewise H(-,B) . The importance of the mater-
ial point of view having been recognized, it would be desirable to
analyze, insofar as possible without reference to the momentary em-
beddings of the body in space, properties of interactions such as the
property of being a surface interaction. By a surface interaction

I here mean an interaction H such that whenever A, ,A are bodies

17772
separate from the body B

A (] 8= A, B __>H(A1,B) = H(A,, B)

and similarly in the other variable (the last being automatic in case
H(A,B) = -H(B,A) holds.) This turns out to be equivalent to the
vanishing of H on certain pairs. Namely, call a pair D,B very

separate (or in at most slight contact) if

~(D UB) =D OB
or equivalently both

>(DUB) = 3D UsB and 3(D[)B) = aD {]2B.

Then an interaction H 1is a surface interaction iff H(D,B) = O when-
ever D,B are very separate. The crucial constructions for the proof

of the foregoing statement are the definition of two "differences"

D, =~ ((a; U A,) N « “A;))
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which will be very separate from B whenever Al/A, are bodies having
equal contact with B , and conversely, the definition of a special

pair

A, =~ (D UB)
A, =na, UpD

which will have equal contact with B whenever D is a body very

separate from B . It seems that still more results could be obtained
within the intrinsic "body" point of view, without involving absolute
continuity with respect to a surface measure which depends on the in-
stantaneous embeddings of the body in space.

A system of states and processes can also be usefully construed
as a small category X , in which domain and codomain are simply the
beginning and end states of a given process and composition is simply
the operation of following one process by another. A category of
this sort is often equipped with a "duration" functor to the additive
monoid of nonnegative time translations; the functoriality is just
the equation

dur( B8a) = dur( B) + dur( a)
for composable processes, and
dur(lX) = 0

for the identity process of any state x . In examples the functor
dur satisfies a further axiom of "unique lifting of factorizations" as

follows

dur(v) = s + t _>_'-_]: a, B[fa =y, dur( B) = s, dur( a)= t]

When the latter condition holds, the state with which & ends could

be considered as the state " v (t)" through which vy passes at the
intermediate time t . Thus each morphism (process) vy in such a
category X determines a path through the objects (states), and indeed
a large class of examples can be constructed by starting with an object
X 1in a topological category ;x: , defining the objects of X to be
the points of X and defining the morphisms of X to be arbitrary
continuous paths in X whose domains are intervals [O,al . Again
the presumption that ;X: is a topos assists in constructing the total-

ity of such paths as a single object (if needed):

P(X) —————> X}
pullback
domR
+ N R

R —  — 1
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where ; is the partial-map classifier which exists in any topos, iR
is the power "set"™ of R , and the lower map is the one which assigns
[0,a] to any a . The fact that PX "3 X 1is a category follows from
the pushout property of intervals in the topological topos:

a
1 —> [0,al

1 L\

[0,Db] W [0,a + b]

~
g
\ ~ \Q
. ~

It is essentially the failure of this pushout property (i.e. of the
failure of paths to be closed with respect to the indicated composition)
in a smooth (as opposed to continuous) topos which forced historically
the introduction of piecewise smooth paths; the possibility of collect-
ing even these into one "smooth" object is one of the important in-
gredients in the work of Chen. A general explanation for this possi-
bility is the following: the subdivided smooth paths can in any case
be collected into a "simplicial"” object X* in X, and the inclusion
cat( ) &— ICAOP has a left adjoint (for any reasonable x ),
which "completes" a simplicial object to a category. Physically more
typical examples of such categories X are obtained as non-full sub-
categories wherein one restricts attention to "admissible" processes
obeying some constitutive relation. More precisely, there is often a

functor

I'e! ‘:— [

from states to “configurations" which satisfies determinism in the form
of the categorical fibration condition: Given any object (state) x

in X and any morphism (deformation process) y in C such that y
starts at 7(x) , there is a unique morphism (state process) Y in
X for which ; (3) = v and Y starts at x - Under this condition
clearly X 1is not usually a full category of paths even if C may be.
Note that following such a fibration = with a duration functor for

C will provide a duration functor for X . For a given category C
equipped with a duration there is a canonical example [Noll] of such
X (of importance in the theory of materials with fading memory) in
which the objects of X are taken to be histories in C . Here a
history is any functor [O,ao)Op wwi—e C (from the reversed ordered
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set of nonnegative time translations) for which durex = A , where &
is the "difference" functor from the ordered set of time translations

to the monoid of time translations. Morphisms between histories are
just arbitrary natural transformations of such functors, and a functor
T can be defined as the restriction (along the indicated full in-

clusion) of the "evaluation at O" functor

op
Hist(C , dur)C—sclOro) — eV , o

— .,

That = satisfies the above fibration condition follows from the
"unique lifting of factorizations" property assumed for the duration
functor on C , using the fact that the time-translation-monoid is
1) commutative and 2) cancellative; for then 1) given any

'~JL—$ e 4.in C there are unique v*, z' in € such that

'Y‘
e ———— Se
1
z it is commutative
v
Y s
and dur(y') = dur(y)
dur(z') = dur(g)

and 2) every morphism in C is a monomorphism- (Note however that no
non-identity morphism in C is invertible since
3) t + s = O:::::ﬁ}t = O and s = 0). There are endomorphisms of non-
zero duration which are nonetheless constant as paths - such freezes
in a configuration category C can have non-trivial dynamical con-
sequences in a state category X . While when working in a single
category it is natural to identify the concept of "“cyclic process"”
with the concept of endomorphism, when comparing two categories by a
functor such as 7 : X———>C , there is the important phenomenon
of hysteresis which must be kept in mind: a morphism <Yy in X may
be such that y = w(y) is cyclic in C even though v itself is
not cyclic in X . Finally we point out that in many cases it suffices
to consider the categories C as abstract categories, that is as
defined in the topos S? of abstract sets rather than in some higher
topological topos ;X: ; for a notion of closed set A of configurations
(or states) can be derived from the category structure together with
the duration functor by requiring that for every Y . y_l(A) is
closed in R , and this will often agree with the original topology.

An important way in which the fibration property for a functor

T may arise is from a uniqueness and existence theorem for a non-
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autonomous ordinary differential equation, in which the paths in the
lower category C represent the time variation of the equation itself,
whereas the paths in the upper category X are actual solutions. It
seems in some contexts needlessly confusing to combine a discussion of
this relationship with a discussion of the separate question of the
extent to which the paths in C themselves are the integrals of their
derivatives.

An important role for state categories X in thermodynamical
theory is to act as domains for quantitative "supplies" (or "actions")
A which are simply functors from X into the additive monoid of a
linear space or the extended reals. The "additivity" on paths expressed
by the functoriality

/S(lx) =0

ABa) =4 (8) + 4 (a)
together with some reasonable continuity condition, suggests that the
value of _A4 at o should be an integral, as indeed it is in many
examples; there seems to be a need for representation theorems which
would clarify the extent to which a general functor in this context can
be expressed by a generalized integral formula. But the functoriality
itself, supplemented by assumptions of a qualitative nature, suffices
for a great many conceptual results of importance.

When the values of a given supply functor _4£ are extended reals,
particular interest attaches to the possibility of an "entropy" function
s of states alone which bounds _4& in the sense that

- a
A @) < 8(x,) S(x;) whenever x, —%> x, £ .

With due attention to the subtleties of addition and subtraction of
extended reals (essentially subtraction is adjoint to addition rather
than in general inverse to it, so that [-«,x»] becomes a (non-cartesian)
closed category, with respect to = ) such an S obviously exists, :_.
namely

S(x) = sup{;5(<x)] xo—JL__’ xl}

If 45 <» and S(xo) < , then S (X) <o for all the x for which
there exists at least one process x - - > X, § the condition that
S(xo) <o 1is equivalent to the Clausius property S(xo) = 0.

Coleman and Owen showed in 1974 that under suitable conditions
not only the above naively~defined S but even its upper-semi-continu-
ous regqgularization S bounds .£ ; a formulation of their theorem
in the simplified setting described above was recently obtained

[Lawvere]. But for each of the diverse special classes of materials
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to which their theory applies, Coleman and Owen obtained much more,
namely that S is partially differentiable and that certain equations
follow (from the above inequality) which relate the derivatives of S
to the thermomechanical constitutive relations of the materials. These
more precise conclusions have not yet been incorporated into the general
theory, but it can be hoped that the present volume contains some of

the necessary components for such an advance.

F. William Lawvere
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