CaTsSGCRICAL  DYFAMICS

F. William Lawvere

[ The following is intended as a summary of some lectures which I gave at

several places in 1967. In these lectures, I offered some preliminary calcu-
lations in support of a program to (3) axiomatize the foundations of continuum
mechanics in the spirit of Walter Noll on the basis of (2) a direct axiomatiza-
tion of the essence of differential topology using results and methods of the
French work in algebraic geometry (some of which I had learned from Gabriel);

but I further maintained that this requires (l) axiomatic study of categories

of smooth sets, similar to the topos of Grothendieck, since the most unatural

form of (2) is incompatible with '"usual" set theory. Now;since my joint werk with
Tierney in 1969-1970, several conferences, many articles, and even one published

book (by Johnstone) have been devoted to carrying out part (1) of this program.

Meanwhile, a serious start on part (2) by Wraith and Kock has been followed by
several further contribtutions, and in particular Dubuc in August 1978 explicitly
demonstrated the consistency of part (2) by construccing a category in which
ordinary differential topology is fully embedded but which morecver, satisfies
the set-theoretically outragious axioms suggestaed by aléebraic geometry. Work
on (2) is far from complete (for example, it now seems that an approach in this
spirit to differential forms involves still further divergence from ''usual"
set-theoretical logic). However, the growth of confidence in the program en-
gendered by these developments has also led to a growth of interest in the origin
of the program itself. I am taking advantage of this curzent interest to pub-
lish this sumnmary, along with the observation that seriously taking up part (2)

of the program will surely lead in particular tec rurther illumination of parts



(1) and (2). Of course, the framework of "ordinary'" set-theory has not succeeded
to prevent Noll's own work from advancing; two fundamental works from the early

1970's are included in his selected papers published by Springer. My main

external sources for the following summary have been page 937 of volume 14
of the Notices of the AMS and especially notes taken by Saunders MacLane on
May 19, 1967 at Chicago and on November 25, 1967 at Urbana, which he very
kindly sent to me in summer 1978. Some remarks based on more recent develop-

ments have been inserted into the summary between brackets [ ].]



I hope that categorical methods can be used -to give
8 simple axiomatic basis for parts of mathematics which arose
from physics (particle mechanics, fluid mechanics, aifferential
geometry, harmonic analysis, etc). Some physicists and engineers
seem 1n effect to have the insight that geometrical and physical
constructions can be perfdrmed, with almost as much freedom as
sets can be defined in naive set theory, without ever leaving the
realm of smooth obtjects and smooth maps. But usual mathematical
models, such as the category'df smooth manifolds, on the one - hand

presuppose a long intricate purely mathematical construction

(there does not seem to te an intrinsic description of that cate-
cory which could reasonatly be taken as a "simple" starting point)
and on the other hand are poor in regaré to closure properties
since even something so fundamental (for calculus of variations
etc) as the smooth space of smooth maps between two smooth spaces

1s ambiguous and difficult, and pullbacks in general don't exist.
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E_As I emphasized in my 1971 - 7_2 Aarhus lectures, not only the

function space but also the smooth space of smooth subspaces

and the smooth space of representations of a given smooth group

But

"should" have clear meanings according to such insight
rather than scoffing at insight (which some seemed to have con-
sidered fhe only healthy public response in recent decades) we
can try to axiomatically express what some aspects of it might
mean precisely and also to construct mathematically acceptable
models of such axioms, in the hope ultimately of actually
clarifying the learhing, development, and use of these branches
of mathematics. From 1966 Oberwolfach lectares by M. Demazure
and P. Gabriel I learned some facts and methods which seem
important both for the axiomatics and for the construction of
models, essentially the Cartier-Grothendieck functorial approach
to algetraic groups {j.since published in Springer Lecture Notes
# 151 (1970) and a 1969 North-Holland book by Demazure-Gabriei}-
Conslder a category ?E, in which we have a given ring:

object HR* . About f%: we will assume that it has a terminal object
l, pullbacks, and for each X —f—> Y, a rignt acjoint

i

to the functor £f of pulling back along f. This implies that

each % /x has an internal hom right adjoint to product over X,
denoted by exponentiation. {jThus ?6. is what came to be called,
after the work of Penon, a locally cartesian-closed category:}

(Later'wewill need one construction which is most easily guaranteed



by assuming % has countable coproducts and coequalizers, O:ijects

of % are to be thought of as smooth spaces, and morphisms X —>R

are to be thought of as quantities smoothly varying over X. Note

that for example . < H_ng(A ,B) for two R-modules has a well-defined
meaning as a subobject of.BA. R-modules are to be thought of as
vector spaces (with a smooth structure) even thoughwe do not

assume R 1s a field. The geometric“origin of R is roughly as follows.
In % there are Euclidean spéées El, E2, ]i:3 whose structure ('=ba_sic
geometric constructions) are given by morphisms ofx . In particular

there are abelian subgroups

B
V. = Trans (En) - En I

of translations and hence rings

Rn = Hom (Vn, Vn) .

R = Rl i1s commutative Yecause of two facts: Bl is one - dimensional,

and every homomorphismn Vl —> V_  is 2 homothety tecause it, like

1
every n~in in % , is smooth. Of course from analytic geome:ry we

Lrow essentially now to use cartesian products to cornstruct co-

ordinatized models of E , imagining in inverted fashion that we
Il

start with the datum R.
The second axiom will permit an intrinsic theory o

differentiation to be developed. We assume given a subobject Dc R

C

wnich contains the zero guantity 1 > R and which 1is to be

thought of as the space of first-order infinitesimal quantities.



For any object X, the object -XD will be thought of as the

tangent bundle of X, with projection XD

___>X induced by 1 L)D,
and for any morphism X —X> ¥ in‘yg . £ will te thought of as

the derivative of f. Thus a tangent vector D _5 X to X is at
D
the point 1 ——>D D

7){ of X, and the derivative f  of f
takes any tangent vector ‘D —/—3X at a point x to the tangent

vector D x> X -—f—§ Y at the point fx. The functoriality of
exponentiation ( )D 1s thus essentially the chair rule for

differentiation. To prove 1l). the Leibniz rule (for differentiation
of variable quantities) as well as that 2) there are precisely the
right amount of tangent vectors for R and related spaces, we 2ssume
our second axiou(ﬂ)iwe need thazt D is closed uncder the action of the

multiplicative monoid R, and that the composites
O R |

-(TP’

are equal, where ()2 denotes the squaring map from the ring structure

(a) D—>R

of R and O denotes the constantly O map R —— 1 __.Q_>R, and we

also need that there is an'isomérphism /

() - R°%¥ R xR

In fact, we may as - well define D by requiring that (2) be an

équalizer, .- and assume (b). ETHoweuer, as Massimc Galuzzil anc

Gian-Carlo Meloni calculated in July 1976, (a) follows from (b)

if we assume that % ¢ R and interpret (b),as in the meantime

had been done in several papers by Anders Kock, to mean that the

canonical morphism RD<é-—- R xR 1s invertible ¥. Though there

are many morphisms R ———J? R (there are at least ali the polynomials),

upon rastricting to D they 2il tecomes linear; but on the other hand

-

D i1s large enough so that distinct linear



(i.e. affine) maps R "'_g R have distinct restrictions D ___ é

R.

#e need category theory for this axiom, since it seems no such ring
could exist in classical set theory 'Las was proved in considerable

generality by calculations in the mid-7C's by Kock, Schanuel, and
Lawvere®. The condition (b) 1is not restricted to '"line-like"™ R, since

it follows that for any R-module V

% * %k
(V )D =V xV

canonically, since

HO(TIR(V,R)D= HOUIR(V,RD) = HomR(V,RxR) = V*x V*

However, many vector spaces are not dual mocules and it is less clear
how to compute their tangent bunéles. But it is trivial that for any

X, Y in?*é

(%P = ()"

showihg how "easy" the smooth structure ofinfinite-dimensional objects
re-
really is. Using (b) we can cdefine thquradient of any variatle

quantity X ——>R  to te the composite

D ~
xP S RPE¥R xR >R

where o 1is the other projection, the one not corresponding to

the map induced by l—Qf>-D. Also the interpretation of targent
vectors as distributions ("“of compact support') is given ty the
moronism

X
X’ — Hom, (R, R)

Corresponding to



as is thé'ﬁf;:gradient

RY s Homg(X";R).

where Homﬁ denotes morphisms which are homogeneous with respect

to the action of the multiplicative monoid R. This monoid

acts on D, hence onxD. On the other hand, additbn of tangent vectors

|
xD;Ex 5 X
()

only exists under the assumption on X; that the functor X takes-

certain non~-pushout squares of D=like objects into products 1n

%/x, E essentially what is called "condition E" in SGa3 as 1
noticed;in April 19.79} . On.the other hand, since Coamaps which

are everywhere defined on a vector space and homogeneous of degree .l

are automatically additive, we may expect that

Hom, (V,V') C—s, Homg® (V,V')

has a strong tendency to bte an isomorrhism in our% , and that in
particular

'Homﬁ' (RD, R)
may serve as a reasonabtle surrogate for

D
Hom (X", R x X)

R xX

O M aai s e .




D

even when X is not acditive over X.(Here we imagine that Hom has

been given some rational definition using the rich supply of
additive relations induced by those not-necessarily-pullback squares
of multiple tangents over X).

{ZAfter reading Kock's exposgs on Synthetic Differential
Geometry from the Benabou Seﬁinar Jan. 1979) The natural extension of
the axiom (b) itself to multiple and higher tangents seems to be to
consider the cate;ory 6',\‘0 of all cdmmﬁ{:ative R-algebtras W in % with
the followling properties |

W R @H
H = REK as R-modules, some K&t N

H equal for some pT N

and to define

D(W) = Algp(W,R).

and then require that the natural m2
: o
y o gP(#)
into the double dual te an isomorphism for all N‘infjhr. This implies

again the same statement for any dual vector space

%k S |
<

v -
Hom, (V,w) j

we define a vactor field on an otject X in.%éto te any

D
sec¢tion v of X"—5 X, and ‘a morchism of vector fields X,v —>X',v'

to be any f in ‘Xé such that




1s commutative. We thus get a categoryVectR(%b. Because our tancent
concept 1s representable by'a single generic object D, the notion

Oof vector field can be equivalently:'expressed in the simpler form

X xD —JVL——:?XZ

\/’

with a corresponding form of the notion of morphism

#hen convenient, the notion of vector field can be equivalently expres:

in a third way:
w

-The object R carries a canonical vector field (essentially

the derivative of the identity) so that for any path R —> X,
its derivative can be composed with it to yiéild a path of tanpgent

vectors.



The notion of vector field is usually taken to be the basic

notion of "differentiable dynamical system", in infinitesimel form.

The corresponding integrated form, is a flow or action of the additive

group R; in the continuous case the study of such is called '"topological

dynamics". The narrow meaning of the term "categorical dynamics" is

thus 2nalogous to the use of‘"cat" as a variatle which can take values
like cat=top, cat = d4iff, cat = PL, etc., i.e. the study of % ~-flows,

where % denotes a pair % R satisfying our two axioms and where a

flow is a pair X, X xR —% X 1n % satisfying the usuz2l axioms

xeo = X

xe“1*ty = (xetl)et2

where this use of the symtol e is solely for notational harmony.

A morphism f of flows satisfies
f(xet) = (fx)et.

Thus we have a category Flowp (%) of %‘-dy'namical objects.

Now since D& R, every flow X x R = X restricts to a

vector field X x D — 3 X by considering only those time-lapses
infinitesimally close to 0, yielding a functor

Flow, CE) —J—L)Vectﬁ(x )

which preserves underlying space. The pfoblem of integrating a system

of ordipary differential equations could thus be viewed as having two
Parts, namely applying an adjoint to the functor ( )0 and then
Studying to what extent the underlying space has teen changed by such
"integration". Actually the above functor has two adjoints, which
might fancifully be called the "upper and lower integrals of a vector

%fleld". The right adjoint can be seen to ‘exist without further ado as



HomD(R,X)

the subspace (of the Space of all complete paths R

29

consisting of morphisms from the canénical vector field on R to

che given one v on X, or briefly the subspace consisting of solution
curves for the infinitesimgl flow v. This solution space carries

a natural flow, induced by translations on R itself, whose correspon-

ding infinitesimal flow is mapped morphically back to X,v by the

evaluation at O

HomD(R X ). .
\[e
X

which to every solution curve assigns its underlying initial-value at

time O. The properties of injectivity or surjectivity ofé; express
exactly the unigqueness or existence theorem for the initial-valvue

problem for the ODE system determined by v.

To & lculate the left adjoint

Vec tR (%,) W FlowR O@ )
D

to ( ) , we need the existence of coequalizers

h -

where we have written xe v(x,h) and where of tourse R acts on

) 4 @R by <x,s>et =Cx,s + t). To compute X %‘)R in a particul_ar
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case 1s more difficult, as it. depends not only on detailed knowledge
of v but also on detailed knowledge of coequalizers in?&',iAn
approximation to such a computation may be useful along the

following lines. Let.cag, R be as arpropriate for algebraic or
analytic geometry over a field of characteristic O (see below)

and suppose X = spec{d) for a commutative algebtra A. Then a vector
field on X can be identifled with a derivation d, (Leitniz: rule) on
A since elements of A are identified with morphisms X —f—-} R

and we can always form

Now define (in sets (3 )

A =‘[f‘aA a0 |a :;H(f)= ov_ﬂg

in terms of iterates of d_, a subalgebra of A, for which a flow

on spec (A,) can be explicitly defined by

Then there is a unique morphism of flows such that the following

diagram of morphisms of vector fields commutes

X —2 x®@R
D
\ :

Note that A . is filtered into quantitiles invariant under the
\'4



flow "on X", quantities whose time dependence is linear along the

flow, etc. The value of such appfoximation seems limited, however.

1f we also have countable coproducts in ae, then the two

"integrals" for ( )a can be viewed as special cases of the very

general adjoints HOmS(R,-) y Xgﬁ associated to a homomorphism

S —-——} R of any two monoids in% . For we can define
e’ = Z D"/ni -
n =20
the free commutative monoid on the object D, where ( )/nt .- denotes
the orbit space fof the natural action of the symmetric group, and
find a natural homomorphism eD - 'R 1induced by the inclusion
D C_ R, and'whose image 1s the ideal of R generated by D, conslsting
of all sums of elements of square 0., If S is cefined as the quotient
D

of e modulo the congruence relation determined by the condition that

1 Os, D be congruent to the neutral element of eD theneD S R
—2, .

and we have

Flawg (%) =% (552 veety Gh).

proviced D is so small that every vector field in % also satisfies

infinitesimal commutativity

XxDxD ——>»X xD

However, if it turns out that the latter is a sﬁecial condition on X



and/or v (i.e. does not follow from the iderntity axiom for vector-

fields by itself') then one should consider its companion condition of

infinitesimal invertibility
<v,l
X xD —‘,3:)————7 X xD X_?.‘L("_l)qxxD ___Vé e

X

and even consider strengthening the concept of vector field by adding

the following still stronger axiom of infinitesimal associativity to the

definition:

X X le_fﬁi%? X x D
i N«
Ay
X D

X xDxD ——_ X
v X D

Here Dl is the infinitesimal neightorhood of the diagonal in D x D

defined by the pullback with multiplication

Dl'____—_—+' L
{ K
D Xx D —> D

whose importance here is that it is equially well defined ty the pullback.

N (——— D x D

Slnce we assume %-Ei R. (ven if the above additional laws are added

Lo the definition of S, it is not clear whether S ——= R becomnes

moric).
-

Vector fields are Just the simplest kind of models of a
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differential-algetraic theory, where the latter refers to a concept

more general than algebraic theories in %’ , whose arities are natural
numbers, but significantly less general than general monads ( = triples)
in.gé, whose aritles are arbtitrary objects, namely we consider theories
in % whose‘ arities and co-arities 2re objects like D {_i.e. more
generally ..D(W) for wzﬂjf} where in general an operation of arity A

and co-arity C on X means a map C X ZA —> X. The hope would be that
more refined theorems as to coequalizers, etc. could be proved for

such limited theories than could be true for arbitrary monads in X. Thus
for example in ordinary algebraic theorles we can deal with commutative
algebras X with an additional unary operation f satisfying

f(xl.+.x2) = f(x;) * £f(x,), but only with differential-algebraic theories
as modeled in sych % does it become '"algebraic" to require also f! = §{ '

i

where ( )' is the intrinsic derivative for the uncderlying object of X i
KL Ip T D D ) S
(preceeded by X X x X X* and followed by X =X x X —X).

Even ordinary "atstr-~ct" algebraic theories, e.g. groups or Lie.algebrasJ
l

when extended naturally to'"trivial" cdifferential-algetraic theories,
may haue nég-trivial morphismé of cifferential-algebraic theoriles
tetwveen them.

As is well known, if G is 2 model of an algetraic theory

in a category with exponentiation and if I is a2n object thenrn GI is

a model of "the same theory, z2nd moreover maps I' =N 1 induce

!
homororphisms G ___?,GI . For example if G is a monoid then the

projection GP ——> G is a homomorphism of monoids (of groups if G 1is
a group) 2nd the kernel of that homomorphism is Lie(G). For example,
Lie(Xx) = Vect(X), the otject whose elements are all the vector fields

non- _
on X, which is thus seen to always carry an "addition" (maybegcommutative
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even for the X which are so bad that addition on.XD in 36/X does
not exist; of ccurse, if addition of tangent vectors does exist
then the Eckmann-Hilton Lemma shows that the “addition" must be
commutative since it must agree with addition ry naturality. Since
Lie 1s functorial for monoid homormorphisms, an associative action

of G on a space X induces an "infinitesimal action"

X x Lie(G) x D >X

of Lie(G) on vector fields on X. What is explicitly the monoid M

obtained by dividing tre free monoid gené}ated by Lie(G) x D by
all relations wnhich are true in 211l actions induced from a global
G-action? It is agalin clear in prirnciple thzt there are left and
right "infegration" adjoints.,

Now the functor

er(¥%) Ltle s i (%)

1s itself representable, in fact ty the S previously discussed.
However we don't know exactly what ﬂb(x) is; with respect to which
doctrine of theories should ‘the costructure of S be computed - partizal
differential-algebraic theories? {jln the first circuiated article
following the synthetic aporoach su;gested in tne lectures here
summarized, Gavin Araith in the early 70's showed how the gpullback
conditions on multiple tangents of G needed to get the. Lie-algetra’
structure on Lie(G) could be exvressed 2r.d used in the sxiomatic
setting } For any definite interpretation of i&,(%) general prin-

ciples say that Lie will have a left adioint, ané hence in particular

%

N
for each GecCr Oﬁ) a co-adjunction nomomorphism G —= G, whose
kernel and cokernel are further definite groups which could be

called “;(G) and 1YO(G) ....But whatever may be the complications



which may lurk in "arbitrary" group objects, the above definitions
and axlioms are sufficient to calculate explicitly in % the Lile
algebra of classical algebtraic groups, e.g.

Lie(GL(n)) = R_. with commutator

n
Lie (S0(3)) = V, with cross p roduct.

‘E See not only the writings of Demazure and Gabriel but also

J.P. Serre's Benjamin book on Lie groups and Lie algetras.(1965) }
The physical study.of a dynamical system involves not

only a state svace X equipped with a dynamical vector field, but

actually a more specific construction of such in terms of simpler

objects. Frequently there is a space Q of configurations and a

given map X ﬁ\. Q expressing that each state has an underlying

configuration, but in general must involve more. For particle mechanic

rigid body mechanics, and hydrodynamics one can define
X = QY

but this;fctually amounts to the very restrictive hypdothesis that the
restonse of the material derends or:ly on tne infinitesimal history
of its motion, where motions are intercreted to mean paths

R ——9-9 Q in configuration space. In the "simple" cases Jjust

mentioned, the analysis of the required vector field on X is of'ten.

associated with the study of a "Lagrangian"

L:x —>Spg
which induces a functional

QR

RRxR

7

called "action" by applying to
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D
R Samony p x g ¥ g¥ —& 39° = x

- "L(q,q)"

the integration process
R
R cf :>RR X R

b .
Py (Ka,Bywen |, £()t)

A possible (physically motivated) addition to our two axioms
would be the existence of the morphism 5 , but it is not clear what
condition on it would be both desirable and possible. E:one of the

desirable ones would be

a+ h
f f(t)dt = £(a)n

a

for any h such thsat h2 = 0. This would seem to yleld an 2l1gebraic

‘proof of the fundamental theorem of calchlus, in conjuriction with
the additivityof’J0 in each of its two kinds of argument:}

But more fundamer:tally, evern 1if the réther zcstract Lagrangian
1s useful, its construction ancé the construction of the vector field
on states in a particular c3ase involves the knowledge of forces
and more particularly of an 2nalysis of. forces into three kinds;
inertial, external, and intern2zl mutual response. Such an analysis
depencs in turn on a more specific construction of the configuration
space Q, which (even when X is more general than QD) is usually

realized as a given subspace

Q SE

{_of “placements"j} where E = E3 1s the actual space 2nd where B

is the space'of "particleé" of the'mﬁteriél bocdy in guestion.
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In particle mechanics, B is a finite discrete set, but in continuum
mechanics it is usually a three-dimensional manifold {:although in
the theory of rods, cords, plates, and shells, B 1s perhaps a lower-
dimensional object for which the fibers ofBD.___;> B are nonetheless
three dimensional:} One of the motivations for the axiomatic theory
of % s 1s to give simple expression to the old idea that the theory
of the infinite-dimensional Q with dim(B)>»0 should be in some respects
Wjust like" the particle case {fwhich was also a motivation for K.T.
Chen's Urbana (1975?) notes on the calculus of variations, in which a

category with some properties in common to our 96 is Independently

‘{ - - -- -
-~ 1 anit il b pe W v A b bl s . _a”'s

constructed 3 .

A reasonalkble condition on

would be that Q is mapped into itself by the induced action of the -
group of rigid motions of E. The group G(B,Q) of all those invertible
endomorphisms of E which map Q into Q might thus serve as a crude
measure of the distinction‘between very rigid bodies (G minimal) and
rarefiedfgases (G maximal); however a more serious measure of the
distinction of the kinds of material B is made of should involve
infinitésimal symmetry of the internal mutual response fuﬁctional,

not disgussed here,

When the simple definition of state space suffices, we have

x =P € E5)0 = &)F = g x »F

where ED =ExV with V = V3)the translation vector space of the

affine space E = E3’and hence

X = £Q x V&
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B

where V- is the space of veloclty finrlds on B. Jnertial forces, momentur

and kinetlc energy involve not only velocity fields an@ a metric on

V for their cdmputatioh, tut also a further given stfﬁeture of a

mass distribution on the body. Using the total mass of the body as unit
so that the mass of parts can te measured in terms of pure quantities

R, such distribution can be considered as an R-linear morpihlsm

RB.._m_.%R

which preserves constants and which-is positive. {:But what 1s the
best way to account axiomatically for positivity? Do the elements
of D support a notion of positivity or not? Unpublished lecture
ofAndré'Joyal at Columbia University, LCecember 1975 on '"real
algetraic geometry" gives some indications:} Irtegration with
respect to m can then te applied to functions with values in convex

sets such as E, yielding in particular a "center of mass" map

Q —> E.

The mass distribution and the metric on E are the main ingredients

ln the analysis of one kind of external force and internal mutual
responise, namely gravitation. For more cetails on more subtle
internal mutual response which material_hodieé m2y nave, See papers
of Walter Noll in the Archive of Rational Mechanics and Analysis,
late 1950s Eland especially Noll's Selected P2pers published by
Sopringer l97H:} the main physical and mathematical ideas of which
can hopefully be expressed in categories like our % o

An important virtue of the categorical axiomatics we have
indicated is that i1if there 1s one model 36 taen there are immediately
infinitely many otrer interesting and useful models for the whole

theory, in fact at least two classes of such. If G is any group



object 1n % (e.g. the Galilean or Lorentz group??) then the category

ﬂ&c of G-actions and equivariant morphims is again a model for our

axioms if we interpret R to mean R with trivial action. Also if M

is any (‘"parameter") object in % then the category %/M of objects
over M is also agaln a model for our axioms, interpreting R as R x M;
theory of dynamical systemé in %/M is the theory of families of
dynamical systems in %parameterized by M { as in biffurcation theory,
see Marsden BAMS vol. 84, Nov. 1978 } ﬁt was, as briefly indicated in
paper for the Eilenberg volume, qualitative and unpublished consider-
ations of the kind just mention~d, as much or more than published

problems of independence, etc. in abstr=2ct set theory and logic,

which were an important impetus toward the 1969 -70 Lawvere-Tierney

development of essentially algebraic axioms for topos theory:}



Now we conslicer three general categorical constructions which
are useful in sﬁowing the existen&e of models for our axioms as well
as for suggestiﬁg possible stronger axioms. All our models?@ are
subgenerated by the algebraic theory"ih whose n-ary operations are

by definition

. Il .
_&__ (R yR) = % (Rn,R)
where by 'subgenerate!" we mean (strongly) generated by the full sub-
category _C_:__of % determined by those objects X which occur as

equalizers

X — R ——= RO

Thus conversely we can construct such'aéby starting with a suitable
algebraic theory 'é' and consicderinz the category g?p of finitely
presented A-algebras, i.e. those that occur as coequalizers of finitely
generated free A-algebras in the cztegory £1g(i) = Lex(C S) of

coP
A-algebras. Then % is to be sought as a full subcatezory of CQ?)

vhose inclusion has a left-exact left adjoint, for then tharks to

work of Girzaud and Verdier in 3Gil4, we can conclude that the category
?6 , called a "topos" will satisfy our first axiom on the existence
0f‘r7fand in fact have further useful exactness properties. As a matzer
of fact, the basic duality between algetra and geometry is Just the

restriction of an adjoint pair called '"conjugacy" by Isbell:

(G&)HP —— c&F

) 5

Lex(C G)°P sh(C,5)

\l :

function

Alg(q)°p<j_g____> % = "Geom{.)”

spec



- 2 -

where both conjugates are defined by the same formula

conj( )(C) = Nat(-,C)

where the C on the right denotes the representable functor of the
appropriate variance, and Nat refers to natural transformations

of functors of the same variance. Thus

~(function algetra of X)(C) = ¥ (X,C)

and
spec(4)(c™P) =Alg(5)(A,C°p).

Those A © Alg(A) which are inverse limits of finitely-presented
A-algebras will satisfy
A = function algebtra of ‘spec (ﬂD

cOp
There is still the choice of which subtoDOSDCof(;g 1s more

appropriate but note that the conditions ™ ¢ €% 7 and &spec(A)

s’

‘6% for all A € Alg(A) l'are equivalent and provide a minimum

restriction on this choice.

In order to satisfy the second axiom, we define

R f_x g g_(;_no'..p

*

to te the underlying set functor on C°P & Alg(L), or equivalently
the functor represented by the free A-algetra on one zenerator. Thus
the spectrum of any algebra in.g?p .1s a space form CE C and any
object: X%t % s determined by a discrete fibration C/X

over C whose fiters consist of all figures in X of a given form
(possibly singular figures) and whose morphisms are "irncldence re-

lations" between such figures. but X also determines, by mapping

2

: n m .
into R,R®, 1n general into all the equalizers ¢ —3 R —3R :m?ﬁJ

a discrete op-fibtration X/C over C whose objects are all variable

quantities on X satisfying various given equations, and whose



morphlsms are A-algebraic operations on sucnh quantities. The
requirement that R be a commutative ring in % will te met if

the theory A containé the algebraic theory of commutative rings as a

o

subtheory, and then D € C will e forcec to be the spectrum of the

.ﬁralgebra ottained by dividing the free A-2lgetra on one generator
t by the A-congruence relation generated ty the one relation t2 = 0,

i.e.

DVajC G;‘§5-90p
oD

is the covariant set-valued functor on the category C

of algetbtras

which assignsto each algebra cPe °P its subset of elements of

-y

square O, Since the full inclusion

op

cY ccb

cE% S

preserves products and whatever exponentials m2y exist (for any

small category C), in order to verify our second axiom for 7Y,

namely

D
R © R xR

it suffices to know that ( )D, right 2djcirt to ( ) x D the

»
L]

free or "tensorM ~roduct in i1g( L), exists in € aré that

J-"-u . - . _— my g
h:.e 'l}n]. W .

20lds there. In the case of 21lgetraic geometry, where A consists
8

only of polynomials with coefficients in some ground field k, this

1s indeed the case, in fact any algetra which is firnite-@dimensionral

| oD
as a k-vector space can be applieC as an exponent in alg (549 y

and D = spec(k[dl), where k[d] = k[f]/t2 Ts two-dimensional. But
it should te possible to take A as the algebraic theory of all

real- analytic functions or of all C® real functions of n variables.

ETIn 1978 Eduardo Dubuc succeeded in constructing an 96. satisfying

both of our two axioms and containing as a full subcategory



the category of all real Ca'? manifolds; the extent to which it

is generated b.y ( the dual of ) | the category of all finitely -
presented c™ :-algebrae is still unclear to me at this writiné}
There should be many algebraic theories A intermediate between
only polynomials as operations and 211 C“ functions as operations,
perhaps satisfyling some suitable closure conditions, in particular

-V
the A generated by cos, sin, exp,C Anders Kock has studied the

closure condition that with each f (x_,t) in A, there is also con-
tained in A the unique continuous fl(g_(_,t,h)' such that f(_x_gz +-h) =
f(x) + fl()_c,,t,h) .h', for all real x, t,h. The inverse of this con-
dition would also seem interesting }.

ESome feel that a geometrical category %g should not reouire 2
category as blg as C to gererate it, nor should it satisfy the topos
exactness condition that monic epics are isomorphisms, but rather -
should be generated (weakly) more nearly by points in a narrow sense.

1f

BC cCX

- n S
are categerlies where 46 (weakly) gener=ztes C, & tenerates 76 , and

% is complete cartesian clcsed, then the full subcategory y‘% of%
weakly generatad by @ , can te defined fo consist of all ¥ such

that for any distinct C Y with C in C, there is E — C,

i —

with E © f) such that E—C —2 Y 2re different. gb is closed
under inverse linmits and %, -subct jects, so is eni-reflectlive

in %, . 1n I‘:&act‘q‘ﬁ is ciosed under exronentistion ard contains

C as a full subcategory, s well as teing weakly gererztecd by b .

The interest of this . erersl corstruction for us 1s th=t an appropriz

Nullstellensatz for A would tell us th~t the dual 9 of the

v

speclal category w0f finite dimensional algebras



defined e=rlier,

-

actually Coes weakly gerierate C. 3irce C%C %» are tull, ‘g‘g 1S
d

mote nearly a geometrical category than other cartesian close
b <hd
categories generated (strongly) Ly such as 3/ . as pointed
out in my 1972 Aarhus lectures, such catetorles as the latter retain

ornly the formal aspects of the yroups, spaces, etc from aft]

For any category C having finite products and split idempotents, an

op
object C E:,aj)g is representable iff the functor ( )c has a right ajoint

Op co'p
S 9
C
cOP
In fact for any Y in g"‘ we have for any S in C_

Y () = Mat(S“,Y)

and in particular if SC‘E.' C for 211 S € C then

o

Y.(s) = ¥(s%,

nOO

A suthpos'jgof S< will te closed under ( )C provided

C - - ,
() preserves COverilngs. {j Several people have recently poir.ted
out that *he foregoirg is true (in the mocels) for C = D(¥%), weftf).
Thus for example we h2ave the rule

D
X —>Y

X ——5 Y,

In particular if Y = R we find that there is a subobject Lof RD

defined.by the'éondition that



the two induced actlions of the multiplicative monoid of R agree.
Then the gradient of a map X — R can be interpreted not only as

an element of D

¢ X
HomR(xD,R)C_ R( )

but also as a map

Xﬁ——————le:lRD-

In fact, there is a canonical map ﬁ——g—é-RD which factors through

L, and the gradient of any X i-;R can be computed as the composite
grad(f) = df

Something like this feature exists also in the cartesian-closed

category constructed by K.T. Chen in BAMS vol. 83, September 1577,

even though the objects D and L 3¢ not exist since his category 1s .

weakly generated by l..:}



