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Introduction to Part I

F. William Lawvere

Part I of this volume consists of three of the first papers on
functorial model theory, developing concretely the approach to algebraic
logic according to which a '"theory" (understood in a sense invariant with
respect to various “presentations” by means of particular atomic formulas
and particular axioms) is actually a category T having certain properties
P and a model of T 1is any set-valued P -~ preserving functor. As a
rough general principle, one could choose for P any collection of
categorical properties which the category of sets satisfies, the choice

then determining the ''doctrine" of theories of kind P , which is thus a

2
(non-full) subcategory of the category of small categories. For example,
the doctrine of universal algebra thus springs from the fact that the
category of sets has the property P of having finite cartesian products,
while the doctrine of higher-order logic springs from the property of being
a topos. The much-researched intermediate doctrine of (classical) first-
order logic corresponds to the fact P that the category of sets has
finite limits, complements of subsets, and images of mappings (related

by the condition of being a 'regular’ category, which is essentially the
logical rule Ex{A A B(x)] = A A 8x B(x) for A 1independent of x). The
usual syntactical preoccupations of logic appear in the following way:

once the logical operations and rules of inference are fixed (by the choice

of P) the question arises of investigating free objects and hence presen-

tation of arbitrary objects in the category of all P-categories T . But



the often encountered suggestion that ''syntax comes first" is refuted:
the essential role of theories is to describe their models, and the same
applies also to presentations of theories when the latter are needed for
calculation. We often encounter and deal with groups for which we do not
know or do not use any presentation: the same is true of theories.

Of course, for an arbitrary given P there is no guarantee of
"ecompleteness in the usual sense, i.e. an arbitrary P-category T may
fail to have enough models in the originally-envisioned category 8§ of
sets, sometimes paradoxically due to the fact that abstract sets are too
"constant'; on the other hand it has become clear in the past decade that
we are for reasons of geometry and analysis in fact interested in models
in more general categories of variable sets such as sheaves over a topo-
logical space, Boolean-valued sets, algebraic spaces, permutation repre-
sentations of a group, etc., - it is because of that that the interaction
between the geometrical and logical aspects of general topoi has become an
object of investigation, for example in the Bangor and Berlin parts of this
volume.

Since a variable set may be partly empty and partly non-empty, the
traditional model-theoretic banishment of empty models cannot be maintained,
bringing to light a certain difficulty which the banishment obscured. Some
claim that this difficulty is the "fact" that "entailment is not transitive'’,
contrary to mathematical experience. However, the actual "difficulty” is
that the traditional logical way of dealing with variables is inappropriate
and hence should be abandoned. This traditional method (which by the way

is probably one of the reasons why most mathematicians feel that a logical



presentation of a theory is an absurd machine strangely unrelated to the
theory or its subject matter) consists of declaring that there is one set
I of variables on which all finitary relations depend, albeit vacuously
on most of them; e.g. a binary relation on X 1is interpreted as XI -+ 2
depending vacuously on all but two of the variables in I . This is of
course not totally absurd, since in the case of non-empty single-sorted
structures, such an interpretation can be associated {in an infinite
number of different but equivalent ways) to a correct interpretation.
However, the fact that ZXI is a single Boolean algebra (claimed sometimes
to be a "convenience') implies that propositional operators such as
A,V,= , applied indiscriminately to finitary relations, can be given a
"meaning”, a highly dubious "gain in generality”, especially when, as
noted above, the useful generalization to many sorts and/or partly empty
domains is made.

Actually the (binary) propositional operators can only meaningfully
be applied to (pairs of) relations having the same free variables. This

may seem to prohibit such combinations as
(*) A(x,y) AN A(y,2) = A(x,2)

but consider the actual meaning: A denotes some subobject of the square
3
X2 of some sort X , and (*) denotes a certain subobject of the cube X
. 3 2 . . .
The three projection maps X 3 X induce three different substitution
operators which to a binary relation A associate three different ternary
relations ole s 023A, 014 - Since conjunction and implication can

meaningfully be applied to termary relations, there is a ternmary relation



(qle) A (023A) :9013A of which (*) is an abbreviation. Thus a syntax
for presenting theories can be given in which propositional operators
operate only among formulas with each fixed finite set of free variables,
whlle substitution operators on an equal footing with quantifiers operate
to change the set of free variables of a formula. These substitution
operators have the structure (not of a monoid but) of a category with finite
cartesian products: they need not consist only of tuples of projectionms,
diagonal maps, ete. for if the presentation contemplates also function
symbols, any m-tuple of terms in n free variables denotes a map

nf *

X' + X" and hence induces a substitution f from m-ary relations to
n-ary relations. If several basic sorts are considered, it is reasonable
to consider that Xn, X" are themselves further sorts V, W and that the
m-tuple f of terms just referred to is simply another kind of term

v £ W ; it is then sensible to regard quantifications Hf,Vf along an
arbitrary such f , not only quantifications ¥x,Vx along projection maps

Wx X *W. The meaning of & applied to a relation A of sort (or type)

f 2
V is simply the relation EfA of type W which is the image of the

composite map A>»+ V #+ W ; for any relation B of type W,
TA b iff Eo£'8
Argd Aty
BF_V iff  £BF A
w et 1 BFry

are the rules of inference which characterize the two quantifiers as
being respectively left and right adjoint to substitution, The subscripts
V,W 1indicate that also entailments are only meaningful if both hypothesis

and conclusion have the same set of free variables; the semantical meaning



of entailment is inclusion between subjects of V (respectively of W),

It may be objected that in the above description of doctrines of
theories the primacy of syntax has not been overturned since the determining
property P must presumably be written in some language of categories.
Since a general investigation of something like a "category of doctrines"”
has so far not seemed useful, the possible productive consequences of this
contradiction, if any, are not known. However, one striking fact should be
pointed out: While classes of theories with complicated definitions have
been investigated in particular, the distinective general classes which have
actually been of interest, namely universal algebra, positive first-order
logic, first-order logic, weak second order logic (= the "arithmetic

univerdes"

of Joyal), higher-order logic, etc, are all definable within an
equational metatheory. More precisely the definition of such a doctrine
amounts itself to a cartesian category (= category with finite limits)
obtained by adjoining to the universal Horn theory of categories certain
additional operators (usually denoting functors or natural transformations)
whose domain is defined by equations, and imposing certain equations (which
may hold only on equationally defined subvarieties) - usually in fact these
equations express adjointness or distributivity of limits, Thus no dis-
junctions or existential quantifiers, nor any genuine occurence of universal
quantifiers or implication, are involved in the definition of these doctrines.

Here by a genuine occurence of a universal quantifier I mean something like

the definition of a generator G

X
Vx[G+X=2fx =gx]} f=¢g



but not a universal Horn sentence
Vx[A(x) = B(x)]
which can be replaced by a (free variable) inclusion of subobjects of X

A!—XB

"eonstant" sets

Even the '"strong" conditions which distinguish a topos of
from a general topos of variable sets,

f
(Axiom of Choice) For X =Y

b

X
if 1Y = Ef(lx) then there exists Y = X with fex = 1Y

(Two=valuedness) For 1 3 1 +1

)
if 1@vVvy then 1Fk¢@ or 1

do not involve genuine occurrences of universal quantification or implica-
tion, but do involve there exists and or on the right-hand side of an
inference; hence, while not expressible in a cartesian (= Horn) metatheory,
they are expressible in a pretopos metatheory so that the full algebraico-
geometric method of coherent classifying topoi is applicable to them.

The paper by Orville Kean (his 1971 U. of Penn. dissertation) considers
the case of theories which can be presented by axioms having the form of
universal Horn sentences, i.e. the extension of "equational® universal
algebra to the case in which some of the postulated identities between
operations may hold only on “algebraic varieties” defined by equations

between some other operations, Were one to consider an arbitrary set of



"sorts", varying from theory to theory, rather than limiting oneself to

the "one base set" for an algebra as is customary in universal algebra, and
were one to allow further the possibility of partial operations whose
domains of definition were such "algebraic varieties", then the appropriate
condition on a category T would simply be: T is any small category with
finite inverse limits (i.e. terminal object and pullbacks, hence finite
products and equalizers, exist in T). Kean however takes care to analyze
the further conditions on T corresponding to the restriction to one base
sort on which all operations are defined. With or without these further
conditions, the correct notion of model is simply any functor T =+ § which
preserves finite limits (i.e. which is "left exact") and the category of
models is the category Lex(T,§) of all such functors and all natural
transformations between them. These categories of models retain the features
from the equational universal algebra of being complete and having a set of
generators which are “finitely-presented' objects in a categorically
invariant sense, but in general fail to satisfy the two further properties
characteristic of equational universal algebra that these generators can

be taken as projective objects and that equivalence relations are effective
(= "precongruences are congruences" in the terminology of my 1963 articles).
The precise definition of "finitely-presented objects' can be found in
Gabriel & Ulmer's Springer Lecture Notes volume 221, which also (implicitly)
shows that "the functor Semantics has a functor Structure adjoint to it",
but does not take any account of the relation with the logical concept of
universal Horn axioms as Kean does. Another important feature of equational
universal algebra which remains valid is the existence of left adjoints to
the “algebraic” (syntactically induced) functors; i.e. if T' + T 1is any

functor preserving finite limits between small categories having them, then
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the induced "forgetful' functor Lex(T,8) - Lex(T',8) has a left adjoint.

Here, since preferred

sorts’ have less invariant significance in this
doctrine, there is less motivation for requiring T' #+ T to preserve them
even if they are there; this has of course the effect that such "forgetful”
functors need not be faithful, but the added generality is mathematically
very natural. For example, the functor S0(2) from the category of
commutative rings to the category of abelian groups is induced by a functor
T' + T which does not preserve the base sort, since the base sort of the
Horn theory of abelian groups is mapped to the subobject {(x,y)ixz + y2 =1}
of the square of the base sort of the theory of commutative rings, but it

is clear that this latter functor should be considered as an interpretation
of the theory of abelian groups into the theory of commutative rings, indeed
an interpretation "definable'" within the doctrine of Horn theories.

The completeness of the category of models and the existence of left
adjoints for induced functors are properties which in general do not carry
over to theories more complicated than Horn theories, though it now seems
that the adjoints may be recovered by allowing the “set-theory” 8 to vary
along with the models (see remarks below).

The first detailed development of a purely categorical concept corres-
ponding to full first-order theories was in the 1971 Dalhousie dissertation
of Volger, on which the second article in this volume is based. The
various sets of conditions on a category T which are considered in this
article are corrections and improvements of a set conjectured earlier by
me which exploited special properties of the Boolean case and coded formulas
as morphisms into an object 2 which in various cases may be interpreted
roughly as the object of sentences or the truth-value object. Volger

considers throughout an arbitrary set of sorts, both because it is no more



difficult and because various results, in particular his completeness
theorem, then apply without change to type theory, which, whatever the

exact notion of first-order theory T , means one which as a category is
cartesian closed. Another feature which has remained invariant through

the various experimentation which has gone on is the interpretation of
quantifiers as functors adjoint to substitutions. Volger also outlines a
modification of the completeness proof due to Andre Joyal which has played

a role in the further unpublished development of the subject which has taken
place since these papers were written.

These early calculations in categorical logic played a role in the
development of the elementary theory of topoi (see, in addition to the
present volume, SLN 274 and articles by Barr, Johnstone, W. Mitchell,
Osius, and Paré in the Journal of Pure and Applied Algebra and the
Bulletin of the AMS, Freyd's article in the Bulletin of the Australian
Math Soc., for some of these developments) which in turn has affected the
recent work in functorial model theory. In particular, using topoi, Kock
and Mikkelsen (in the Victoria Symposium, SLN 369) generalized and clarified
some basic constructions of non-standard analysis, which was one of the
spurs to the further simplifications and application contained in Volger's
second paper (1972) in this volume,

In the remainder of this introduction I sketch briefly some more
recent developments in geometric logic wherein theories are modelled
functorially in general topoi or in other words continuously variable
models are studied. In this the doctrine of positive logic, i.e. &,A,V,

but no special attention to V,=, necessarily plays a distinguished role,



since it is just this logic which is preserved under arbitrary continuous
change of parameter space (the V may be allowed to be infinitary) and
also because an arbitrary Grothendieck topos can be viewed as the
“"classifying topos'" for such a theory. However, full first-order logic

can also be handled using the method due to Kripke and refined by Joyal

and Freyd. More details can be found in my forthcoming paper in the
Proceedings of the 1973 Bristol Logic meeting and in papers of Freyd,
Johnstone, Joyal, Reyes and Wraith and by Benabou and his students.

In fact, important in algebraic geometry, that a sheaf of local rings
is just a "local ring object" in the category of set-valued sheaves, remains
valid when the theory of local rings is replaced by any many sorted theory
in which only the logical operations A V & are considered and when sheaves
are taken to mean objects in any topos. Here the truth of an existential
statement or disjunction in the intrinsic logic of the topos is found by
the adjointness rules of inference to mean locally, existence or locally,
disjunction. The discrepancy between true (globally) and globally true
(which is due to the fact that epimorphisms need not have sections and which
gives rise to cohomology) may be exemplified by the fact that sheaf
theoretically complex exponentiation is an epimorphism and hence the state-
ment that the logarithm exists is true globally, but the actual existence
takes place on a covering only. Intuitionistically, the same sort of
relation between local and global holds even for a cubic. This class of
theories may be considered to include any clagsical theory, since the
negations of formulas may be considered as further atomic formulas and the

axioms of negation considered as particular axioms rather than general axioms.
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But the doctrine is basically intuitionistic, as is the intrinsic logic of
the topoi where models are to be valued. The geometrically invariant
condition on T to be a theory according to this doctrine is precisely
that it should be a pretopos in the sense of Grothendieck-Verdier

Exposé VI in $pringer Lecture Notes Volume 270, The finite-covering topol-
ogy on T leads to a topos T which, as pointed out by Reyes, has the
property that for any topos X the category of continuous maps X =+ T is
equivalent to the category of models in the "set theory” X of the theory
T . The topos T 1is coherent in the sense of SLN 270 and all such arise
from such theories; one may consider T as §[U] , the "set theory"
obtained by freely adjoining to the category of sets an indeterminate
model U of T . Even for the theory T of equality, this construction
is instructive; T in that case is the functor category SSO (where So

is the category of finite sets) which is a non-trivial topos whose category
of points is equivalent to the category of sets, and we have that for any
topos X , the sheaves on X are just the continuous functions from X
into the (generalized) space T of sets.

The theorem of Deligne that every coherent topos has enough (set-
valued) points is seen from the above discussion to be equivalent with the
fact that every many-sorted intuitionistic theory taking account only of
A,V,2& has enough set-valued models. Further, the Kripke completeness
theorem (preserving also 7V,» when they exist) has been elegantly proved
by Joyal in the invariant setting. The Kripke-Joyal Theorem constructs a
model Sn)4 T in a functor category rather than in sets &8 ; while the
model itself preserves 7V,=» the '"models" in § derived by evaluating at

a given "stage of knowledge" D € D usually do not.
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Varying the topos in which we take models is quite essential for
certain universal problems. For example consider the interpretation
T +T of the theory of commutative rings into the theory of local rings
and consider any given ring A . The problem of finding a local ring A
universal among all those to which A maps has no golution if we consider
only one topos, but on the other hand if we allow the set theory to spread
out, there is such a universal local ring in the topos called spec (A);
thus the universal problem involves finding the natural domain of variation
for the quantities in A , which will usually not be only the single point
which corresponds to the topos of constant sets. When the topos of
departure does not satisfy the axiom of choice, spec (A) does not have
enough internal points (contrary to the incorrect statement in my paper
for the 1970 International Congress) but Joyal has given a very simple
internal construction of it using the notion of distributive lattice
object. Since spec (A) is coherent* if Ae€s§g, Deligne's theorem yields
enough external points for it when § does satisfy the axiom of choice.
When the base topos of departure does not satisfy the axiom of choice,
i.e. when it consists of variable sets varying in an organic fashion, a
suitable formulation along these lines of a general completeness theorem
for first-order theories in it has still to be found; such a formulation
would presumably partly reflect the fact that in the real world consistency

of a theory is not sufficient for the existence of models.

To prevent a possible delay in understanding the important exposé VI

(SLN 270) of Grothendieck-Verdier cited above, it should be pointed out

FhaF their statement to the effeect that separated coherent spaces are finite
1s 1ncorrect; in fact these spaces are just the Stone spaces of arbitrary
Boo}ean algebras, while arbitrary coherent topoi which are gemerated by
thélr.open sets are just "Stone spaces" of arbitrary distributive lattices.
This is also a good place to point out that my statement in Springer Lecture
Notes 274 that universal quantification in a topos leads to a triple is also
incorrect; what was intended there is simply that universal quantification
and infinite internal intersection satisfy the reasonable formal laws.



