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The (elementary) theory of topoi, the fundamentals of which were 
outlined in Prof. Mac Lane’s talk at this colloquium, (see also [6, 12, 131) 
is a basis for the study of continuously variable structures, as classical set 
theory is a basis for the study of constant structures. The need for the 
autonomous development of such a theory may be doubted in view of the 
existence of representations of a variable structure, (e.g. a vector bundle 
or a family of curves) in terms of a domain of variation (considered as a 
constant structure such as a topological space) and a succession of 
constant structures, one for each ‘point’ in the domain of variation. But 
there is an analogy here with the notion of variable quantity, a notion 
which was taken quite seriously by the founders of analysis and which 
has not been ‘eliminated’ by set theory any more than continuity has been 
eliminated by the ‘arithmetization of analysis’ (which is just that and not 
analysis itself). 

As Engels remarked in.the period when set theory and the arithmetiza- 
tion of analysis did not yet dominate mathematical thinking, the introduc- 
tion of the advance from constant quantities to variable quantities is a 
mathematical expression of the advance from metaphysics to dialectics, 
but many mathematicians continued to work in a metaphysical way with 
methods which had been obtained dialectically (Ant i -  Diihring, in the 
section on Quantity and Quality). The existence of a representation of a 
commutative ring of variable quantities in terms of functions on its 
spectrum does not eliminate the need for the  theory of commutative rings 
(and indeed one of the ways of accounting for the differential structure of 
the variable quantities is precisely through the use of rings with nilpotent 
elements for which such representation in its classical form is not 
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faithful). There are also useful concepts of variable quantity such as 
Schwartz distributions or Sato hyperfunctions, in which the ‘domain of 
variation’ is clearly ordinary space but just as clearly not the ‘points’ in it. 

The characterization of motion as the presence of the same body in two 
places at the same time is only an irresolvable contradiction if we ignore 
that the metaphysical opposition between points and neighborhoods 
(introduced by the Platonic deification of points and revived by set 
theory) is not maintained in the practice even of mathematics. As Lenin 
affirmed in his Conspectus of Hegel’s Lectures on the History of 
Philosophy (in the section on the Eleatic School) it is that characterization 
of motion which correctly expresses the continuity of time and space, 
whereas the concept of motion as the presence of a body one place at one 
time, in another place at a later time, describes only the result of motion 
and does not contain an explanation of motion itself. Every notion of 
constancy is relative, being derived perceptually or conceptually as a 
limiting case of variation’ and the undisputed value of such notions in 
clarifying variation is always limited by that origin. This applies in 
particular to the notion of constant set, and explains’ why so much of 
naive set theory carries over in some form into the theory of variable sets. 
Our inversion of the old theoretical program of modeling variation within 
eternal constancy has something in common with that of the intuitionists, 
though we consider variation generally, not only variation of mathemati- 
cal knowledge; the internal logic of a topos is always concentrated in a 
Heyting algebra object. Tf this object happens to be Boolean, then the 
variation of the sets is (constant or) random in the sense that for every 
part h of the domain of variation the topos splits as a full product 
C = E/,, x C F / h . ,  i.e., any motion over b and any motion over the com- 
plementary part can be combined into a total motion admitted by G, 
whereas for most topoi there is a continuity condition at the boundary of 
b ; this is of course analogous to the contrast between continuous and 
measurable variable quantities. 

There is a more profound connection than analogy between structure 
and quantity, a s  also was pointed out at this colloquium by Prof. Bernays. 
The primary subject matter of mathematics is the variation of quantity in 
time and space, but also this primacy has the nature of a first approxima- 

’This remark i s  ;\Is.) relevant to non-standard analpsis[4] which can also be clarified by 
topoi [ 1 1 1 .  

‘Limited by that origin’ has also a positive aspect. 
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tion, not only because occurring systems of quantities have structure, but 
also because of the fact that each material quantity is a quantity of 
something and hence has its own particular structure which we can hope 
to clarify mathematically. 

Thus what I want to emphasize here about the theory of topoi is that it 
allows the passage from constant to variable sets (and back) and is a basis 
for studying relationships between (variable) quantities and (variable) 
structures. Since the theory arose from geometry and permits a deepening 
of analysis, it is striking that the axioms we arrived at are essentially (a 
categorical formulation of) the logician’s definition of analysis: higher- 
order number theory. No general axiom of extensionality can be assumed 
but for a particular topos we may be able to discover a particular 
generalization of extensionality which is applicable (leading to a represen- 
tation of the objects as sheaves) and if the topos is defined over a topos of 
constants in which the axiom of choice is valid, there may be enough 
points (leading to a representation of the objects as families of constant 
objects; this representation will however not account €or the morphisms 
between objects without the further information of a left exact ‘com- 
onad’, which generalizes the fact that the ‘continuity’ of a classical sheaf 
in its espace Ctale representation is not a property of the family of stalks 
but is the further information of a specified topology on their sum, and 
that morphisms between sheaves are represented only by those families 
of morphisms of constant objects which preserve these specified top- 
ologies). The close connection of the axiom of choice with the existence 
of points (primes) in algebraic geometry as well as with the existence of 
models in logic (below we will point out that models are points and show 
how both Krull’s Theorem and the Godel-Henkin-Kripke completeness 
theorem follow from Deligne’s theorem on coherent topoi) is especially 
striking when we notice (Diaconescu) that the axiom of choice (in the 
form that all epimorphisms split) implies the law of the excluded middle 
and hence implies the constancy-randomness of sets as pointed out 
above; the falsity of the Sierpinski-Banach-Tarski paradox in the world 
is doubtless connected with the fact that material bodies are varying in a 
non-random fashion, and for similar reasons it is idealism to claim that 
something exists in the real world because its theory is consistent though 
of course the claim might be defended for a world of eternal thought. In 
order to extend the realm of direct applicability of the theoretical 
experience of set theory, part of our programme is the development of 



138 F. WILLIAM LAWVERE 

mathematics over an arbitrary base topos, (in particular one without the 
axiom of choice); a simple and beautiful example of this (discussed later 
in this paper) is a construction due to Joyal of the spectrum of a 
commutative ring without any use of primes (correcting an error in my 
paper, written in Nice, in which I mistakenly thought that enough such 
internal points would exist if only an intuitionistic definition was taken). 
Part of what follows was developed in discussions with and in unpub- 
lished lectures by AndrC Joyal, Gonzalo Reyes, Jean Giraud, and Gavin 
Wraith. 

The fact that the axiom of choice implies the law of the excluded 
middle does not mean that intuitionistic analysis is inconsistent, although 
the following simple argument, starting from del Ferro’s theorem, might 
seem to show at first that it i \  

vy 3 x  [ y  = X ( X 2 -  3 ) ] ,  

3.f VY [ Y  = . f (Y)( f (P)2  - 311, 
f : R + R is continuous 

(since by Brouwer all functions are). 

However, there is no such continuous f, although there is a covering of R 
by two open intervals (-so, !)(- I ,  m) on each of which continuous func- 
tions f-,, f y  can be defined which satisfy the equation. There are at least 
two lessons to be drawn from this: The choice ‘functions’ in intuitionism 
are not functions, i.e., do not preserve equivalence of Cauchy sequences 
though they are functions at the level of Cauchy sequences; this suggests 
a weaker ‘axiom of choice’ which i s  valid for the topos of sheaves on a 
zero -dimensionul space (such as NN), namely that (although not every 
object is projective) every object is the epimorphic image of some 
projective object (the ‘some’ could even be replaced by a functor); 
however for sheaves o n  a space, the space would at least have to be 
connected, no matter which definition of real-numbers object is taken, if 
Brouwer’s theorem that the real numbers object is not the union of two 
proper disjoint subobjects is to hold. Kripke’s method of modelling 
intuitionistic logic in a presheuf category, in which existential quantifica- 
tion commutes with evaluation at the ‘stages’ will probably not work for 
higher-order logic; the second lesson is that the more general ‘commuta- 
tion relation’ for existential quantification involves passing to a covering. 
The latter is typical for general sheaf categories, as we will now explain 
more precisely for a more general class of categories. 
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It is a theorem (Mikkelsen and Park, unpublished) that any topos (i.e., 
any category having finite inverse limits, a ‘function space’ functor ( . ) A  

right adjoint to each Cartesian product functor A x (.), and a ‘truth-value’ 
object R uniquely classifying arbitrary subobjects of an arbitrary object 
A by characteristic functions A + R) also satisfies the following condi- 
tions characteristic of a pretopos: Besides a terminal object 1 and 
pullbacks, there exist a coterminal object 0 and finite coproducts 
(denoted by +) and these are preserved by pullback in the sense that for 
any X -  Y, f*(O,) = Ox and if A l  + A Z +  Y, then f*(A, + A2) = 
f*(A,) +f* (Az)  as objects over X ;  every equivalence relation E s A on 
an object A may be obtained by pulling back some A + B against itself; 
every morphism A + Y may be factored uniquely into an epimorphism 
followed by a monomorphism A -+ I H Y and (especially important) 
this factorization is preserved on pulling back along any X -+ Y. The 
subobject I H Y is called the image of A -+ Y, and if A ,  w Y, Az w Y 
are two subobjects, then the image of A ,  + A2 + Y may be denoted by 
A 1  U A z  Y. It follows that every epimorphism A + B is the coequal- 
izer of the equivalence relation it induces and that every equivalence 
relation (though unlike for a topos, not necessarily every pair A ‘  2 A in 
a pretopos) has a coequalizer; there is clearly the derived rule f*(A, U 

A?) = f*A1 U f*Az. A typical example of a pretopos may be constructed 
as follows: Take any many-sorted first order theory involving at least the 
connectives =, A, v, 3 (logical equivalences and entailments may be used 
as axioms but not necessarily in formulas); let the objects of the category 
be arbitrary formulas of the theory and let the morphisms be (provable 
equivalence classes of) relations A -% B which are provable functions, 
i.e., 

f 

F ( a ,  b )  t A ( u ) ,  F ( a ,  b )  t B ( b ) ,  
3 a  [ F ( u ,  b )  A F ( u ,  b’)] t b = b’, A(a)  t 3 b  F ( a ,  h ) ,  

where a, b, b’ are appropriate vector variables; adjoin coproducts and 
quotients formally if necessary. Then A -% B is an epimorphism iff 
B ( b )  k 3 a  [ F ( a ,  b ) ]  and in general all existential quantifiers and images 
can be expressed in terms of each other. The fact that monic-epics in a 
pretopos are isomorphisms means that unique existence implies actual 
existence, but in general the axiom of choice fails because there are not 
enough constants. This last remark is connected with the non-trivial 
‘commutation rule’ for existential quantification which we will now make 
more precise with the aid of an auxiliary class of objects. 
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Let 3 be any class of objects in a pretopos @. % could be the class of 
all objects for the purpose of the following proposition, but for example a 
useful condition on a topos CF is that there exists a single object the class 
of whose subobjects forms a suitable class %. The objects of % may be 
variously interpreted as stages of subjective or objective time, as open 
sets, as rings of definition, etc; any morphism U --% X of Q (whose 
domain U belongs to % )  may be called an ‘element of X ’  defined at (or 
over) U, and if U’ --L U is any morphism U’* X may be inter- 
preted as x restricted to U’ or the fate of the element x under the 
transition t. The suitability of qL is expressed by the condition that % 

generates CF in the sense that any monomorphism A - Y in Q is an 
isomorphism provided it is ‘%-surjective’, where a morphism A - Y 

is called %-surjective iff  for any U A Y with U in % there exists 
U - A with uf = y .  For a pretopos this suitability is equivalent to 
another way of expressing % -extensionality: If 

f 

I 

f 
A a Y  

in  CF are such that uf = ag for all U -% A and all U in %, then f = g. In 
order to state the proposition we need one more definition: a class %’ of 
rnorphisms all having codomain A (but possibly various codomains) is 
said to couerA iff for any subobject A ’  - A, we have an isomorphism 

4 

provided for every a in  %‘ we have u E A‘  (in the sense that there exists 
a ‘  in Q with a ’ i  = a ) .  Clearly, if %‘ is a subclass of %‘ and covers A, then 
the morphisms in %‘ with codomain A also cover A. 

PROPOSITION 1.  Let E be a pretopos and let % be a class of objects with 

respect to which @ sutisfies %-extensionality and let X --+ Y be u 

morphism o f  Q. Let V’- Y be an element of Y defined over V in %. 
Then the validity of the formal condition 3 x  [ X ( x )  A x f  = y ]  may  not 

imply the existence of V 1:\ X with x f  = y (even if  V = 1) but is 
equiuulent with the uulidity of the cutegoricul condition that the cluss of all 

those U --% V f o r  which there exists u commutative square 

f 
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u-v  
i 
x- Y ‘  

and for which U is in %, covers V.  The morphism f i s  an epimorphism iff 
Y ( y )  1 3 x  [ X ( x )  A xf = y ]  holds formally i$ for every y with domain in %, 
the class of a as above covers V,  i.e., i$ for every such y there is some cover 
% of V for each element (U,  a )  of which U is in % and the above square 
can be completed with an x. (If we simply took the pullback square, then we 
would have one epic a, but U would usually not be in 021.) 

1 

8 ,  i .  
f 

As another example of the Proposition 1, consider the fact that the 
complex logarithm exists and yet does not exist. Logically speaking this 
contradiction was solved by passing to a deeper stage of knowledge, 
geometrically speaking by passing to a covering (the first integer cohomol- 
ogy group shows that the contradiction was not vacuous). Here we take @ 
as the category of set-valued sheaves on a topological space (such as an 
open set in the plane) and the class % of open subsets of the space is 
suitable; let X be the sheaf of complex-valued continuous functions and 
Y the sheaf of non-vanishing complex-valued continuous functions and 
take for f the exponential mapping. Then f is an epimorphism in Q (i.e., 
V y  3 x  is true with formal variables x, y )  however (taking, say, V = 1, i.e., 
the whole space) for given y (i.e., a non-vanishing function defined on the 
whole space), there is no x with xf = y. But there is an open covering U, 
of 1 with x, such that xf = yIU,. 

A pretopos need not admit an internal universal-quantification 
operator, but if it does (as for example any topos does) then the 
‘commutation relation’ for V relative to a suitable Q is the same one 
familiar from Kripke models and from forcing, i.e., the truth of a 
universal statement at V involves all elements defined over all U with 
U + V and U in %, not only all elements defined over V. 

The close relationship between the logical and geometrical ways of 
solving existential contradictions may be further illuminated by another 
simple proposition in which we change the global domain of variation 
(i.e., adjoin a variable ‘constant’). The opposition between global, eternal 
elements 1 -+ X and elements U -+ X with an arbitrary domain of 
definition is not metaphysically fixed. Consider the category @/ U whose 
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objects are ‘over U’,  i.e., objects of Q equipped with a structural 
morphism to U and whose morphisms are commutative triangles (i.e., 
morphisms of Q which respect the structural morphisms). Then the 
terminal object 1 of @ / U  is just the identity morphism of U and if we 
consider X u  = U x X as an object of E / U  (namely as the ‘constant’ X 
vacuously varying over U ;  this may amount to a restriction or an 
expansion of the original domain of variation according to the particular 
U ) ,  then the eternal elements I + Xu of X in the sense of @/ U are just 
the U + X defined over (or at) U in the sense of E. 

PROPOSITION 2 .  For any object U of Q ,  Q / U  is a pretopos if @ is. The 
functor 

Q% e/u 
preserves the pretopos structure and the internal universal -quantification 
operator i f  Q has it (a s  well as the topos structure i f  E has i t ) .  The object U 
has, after passing into E / U  by the functor, always a canonical eternal 
element (in terms o f  E, this global element is just the diagonal map 
U + U x U ) .  If U -+ 1 is an epimorphism in @, then the functoris faithful. 

Note that U may have had no global elements in E. One geometrical 
example of the above proposition involves extending the ring of defini- 
tion; then U is just the spectrum of the extended ring. If we recall the 
correspondence between pretopoi and many-sorted intuitionistic first- 
order theories, we see that the above proposition implies the well-known 
lemma on consistently adjoining constants; namely U -+ 1 epic just 
means that k 3 u  [ U ( u ) l  whereas a morphism 1 + U is really a constant 
satisfying U ;  the construction of @/ U amounts to adjoining the ‘constant’ 
d and the axiom k U ( d )  and closing to obtain a theory of the same kind as 
before (i.e., to maintain the pretopos nature). 

Recall that a continuous map (geometric morphism) 3 f, 9 between 
topoi is just a functor having a left exact left adjoint f * .  Given a fixed 
topos S, by a topos defined over 5 is meant a topos X together with a 
given continuous map X -+ 5, and by a continuous map over G is meant 
a continuous map X + y) which commutes up to a given equivalence of 
functors with the given maps X -+ G, 8 -+ G. If 
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are two continuous maps over G, then by a morphism f -+ g is meant any 
natural transformation f*  -+ g *  which reduces to the identity on 6 ;  thus 
there is a category Top~(X,y]) of continuous maps from X to 8;  
seemingly all that can be affirmed about it in general is that it has colimits 
over filtered category objects from G (e.g. over directed poset objects in 
G). In particular, TopS(lB, $!I), the category of sections of the given 
structural map of 23, is called the category of (6-valued) points of y. If 9 
is the category of internal G-valued sheaves on a complete Heyting- 
algebra object in 6, the morphisms in the category of points of g 
generalize the usual partial ordering of points of a not-necessarily 
T,-space. The category of points may be empty, even if 2 is ‘the’ 
category of constant abstract sets-for example, if 8 is the category of 
sheaves on a complete Boolean-algebra object (in 6) which is atomless ; 
of course we can then generalize the ‘point’ analysis of 9 by considering 
‘points’ (i.e., continuous maps) of defined over a suitable class of W’s 
and below we describe a precise theorem of Barr to that effect. 

The sense in which a topos X equipped with a continuous map X + G 
is ‘defined over’ the topos G has two aspects. The ‘closed category’ aspect 
(exploited in [IS]) is that we can define 

P 

X(A,  X )  = p.(X”) 

for any two objects A, X of X, so that the horn sets of .% are not merely 
abstract sets but are enriched to be objects of 5, and in particular we may 
consider p .  itself as the functor represented by A = 1. The other aspect is 
that for any object S of G we can define 

xq = X / p * ( S )  

and consider the latter as the category of S-indexed families of objects of 
X ;  such a family (i.e., an object of 3’) should be thought of as 
‘G-smoothly’ indexed. Usual formal operations on families remain within 
these, for example substituting along any ‘change of index set’ S’ + S in 
G, internal coproduct and product 

n 
S 

etc. One may consider the structure on X consisting of the notion of 
families as an atlas on ,% with models in G, and these operations on 
families as coordinate transformations; this notion of atlas will also be 
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realized for many categories W over 5 which are not topoi such as the 
category ab (2 )  of abelian group objects in 2, the category top(S) of 
topological space objects in S, the category cat(,Z> of (‘small’) category 
objects in 5, etc., and in general we should consider between such ‘large’ 
categories ‘over’ 5 only those functors which respect the atlas structures 
(which apparently any functor definable within the set theory G will 
automatically do). 

The general facts about topoi over a base topos S depend of course on 
5, but here we will discuss mainly the three cases of any topos E, a 
topos 2 having a natural-numbers object N, and any topos S satisfying 
the axiom of choice (the conjunction of the last two conditions we may 
roughly identify with Boolean-valued models G of Zermelo set theory 
weakened to bounded comprehension). Naturally, more can be affirmed if 
we assume that one or both of W, ?] satisfy some ‘smallness’ condition 
relative to 2; we will consider mainly three such conditions. 

The first smallness condition reflects a very important construction in 
the classical sheaf theory, but has not been investigated much in topos 
theory and in particular, I do not know an internal characterization of 
those maps !?I -+ 2 which satisfy it. The external form is this: for every 
topos .t‘ over 2, there is an object rz(,T,)‘)) in .t‘ and an equivalence of 
categories 

TOP,(X, y)) =.?(I, rz(,T, ?I)) 

and in particular 

~ o p ~ ( . t ‘ / ~ ,  = x(x, r=(x, 
for any object X of 3. Then l’z(W,?)) is determined as the ‘sheaf of 
!?)-valued continuous functions (over 5) defined in W’. This will exist at 
least in the case that is the topos of sheaves on a complete Heyting 
algebra in 2 (for example on the open sets of a topological space object in 
2). The fact that Tz(!I-, ?)) is an object of 2 is the (quite restrictive) 
condition that y)  has only a ‘set’ of points over 2;  if b is thought of as the 
sheaves on a base space more general than a point, it is more usual to call 
Tr( I >, >))) the sheuf of sections of >7) + S rather than calling it the ‘set of 
points’. Also neglected has been the study of the intrinsic structure of the 
objects T,(.t‘, I)); for example they have a category structure (it need not 
reduce to a poset even though it is small; see [ I ,  Vol. I ,  pp. 479-490 on 
‘Ctendues’]) and a topology (richer even in the classical case than the 
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espace CtalC topology, which in the intrinsic sense of X is discrete) 
derived from the truth-value object of 8. 

For example, if 5 has a natural numbers object, then it also has an 
object RCaiuchy of Cauchy-real numbers, and = E/Rc.ruLhy is a topos over 
Q. For any X over G, rs(X, g) is then the sheaf of locally-constant real 
valued €unctions defined in X ;  if X happens to be ‘locally connected over 
Q’ in the sense that the structural map X 4 is essential, i.e., there is 
another functor X a  G left adjoint to the left adjoint p * ,  then the sheaf 
of locally constant real-valued functions in X is just the object of Cauchy 
reals calculated in the sense of X. On the other hand, the object of 
Dedekind reals as calculated in X will, at least in many cases, be T s ( X ,  !It), 
where % = sh(R, 5) is the ‘usual’ category of sheave, over R E 2 with its 
usual topology; thus the Dedekind reals in X typically correspond to 
continuous real functions on a topos .t‘ while the Cauchy reals are only the 
locally constant ones (even if the two definitions happen to agree in the 
base topos S). Thus a particular quantity (varying over 5) may be 
represented by a pair of adjoint functors (i.e., continuous map of topoi) 

w - 91 
and other kinds of quantities can also be so represented by considering a 
different topos in place of ?H. Truth values may be considered a kind of 
quantity, and the category G’ of morpbisms in 5 plays the role of the 
Sierpinski space relative to 6 in the sense that continuous maps X -+ G’ 
correspond to morphisms 

1 -+ Rt = L ( X ,  5’) in X. 

If II is an abelian group in 6 ,  we might agree to consider even an element 
of the cohomology group H’(X,  II) as a ‘quantity varying over X‘; at any 
rat? such an element can be represented by a continuous map 

X - 5” 
of topoi over G (where 5” is the category of n-sets in G ) ,  or again by the 
structure of a principal homogenous space in X. We will see below that 
quite general kinds of structures (e.g., first order structures) varying over 
X can also be represented by continuous maps 

X-E 
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where E depends on the particular kind of structure but Z is any topos 
over 5; but since typically there are a ‘proper class’ of structures of kind 
2, there will usually not exist objects I‘d<?,%) in X. First we discuss 
another condition on topoi over 2. 

The second smallness condition is essentially that which is usual in the 
Grothendieck-Giraud-Verdier theory (relativized to 5) and internalizes 
the notion of a set O%r of  generators as discussed above; first we discuss a 
special case. Intuitively, y)  over 2 is the category of sheaves for a 
complete Heyting-algebra object in G iff ‘relative to 5’ is generated by 
the subobjects of 1 (i.e., by the class 011 of ‘open sets’ of y]). A compact 
internal expression of this idea was found by William Mitchell, who 
proved the following precise proposition: 

PROPOSITTON 3. If g-”-S is a continuous map of topoi, then 9 is the 
category of internal G-valued sheaues on a complete Heyting-algebra 
object o f  G (namely p *(O,) iff for every injective object Y of !2) the canonical 
adjunction morphism 

P * ( P . ( Y ) )  - y 

is (111 epiniorphism. I n  fact it su$ces to consider those (automatically 
injective) Y which ure the partial-morphism classifiers Z of arbitrary 
objects Z. 

The general case of y) generated, roughly speaking, by the class of all 
subobjects of some object G was conjectured in the following form by 
Mitchell and proved by Diaconescu; the original version (for 5 = a 
Grothendieck universe) is a theorem of Giraud, who later proved a 
relative version for 2 a Grothendieck topos [ 141. 

THEOREM 4. 9-L i  Z is the global sections functor for the category of 
sheaves over some site in S iff there exists an object G in 9 such that for all 
objects Y of 9 the canonical morphism 

G x p * ( p * ( P G ) ) -  E 
obtained by composing evuluation with the adjunction is an epimorphism 
i n  9) (where ? denotes the object such that ? ) (X ,  9) i s  the set of partial 
morphisms from any X to Y ) .  

For the  purpose of this paper let us say that :J) is hounded over 5 if this 
second smallness condition (i.e., the two equivalent conditions on p in the 
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above theorem) holds. The following theorem of Hakim-Giraud (in the 
case of Grothendieck topoi) was proved for arbitrary 5 by Radu 
Diaconescu in his thesis [5].  

THEOREM 5.  If 23 is bounded over G, then for any topos .T over G, the 
pullback .E X Z  (= cartesian product in the up-to-isomorphism sense of 
the 2-dimensional category  top^) exists as a topos defined over 55. 

Another property of 8 bounded over G proved in [ 1 ,  Vol. 1, pp. 400-4011: 
The category of points contains a family indexed by an object of 53 such 
that every point is a filtered lim of points in the family; in view of the results 
of Reyes to be discussed below, this is a geometric version of a general 
Lowenheim-Skolem theorem. 

The following illuminating fact about topoi (long known for the case 
G = constant sets) was (conjectured by me and) proved by Gavin Wraith 
for any base topos having a natural-numbers object. 

d 

THEOREM 6. Suppose 5 is a topos having a natural numbers object. Then 
there is a topos G[Tl over G ‘obtained by adjoining an indeterminate set T’ 
such that f o r  any topos ,E over G there is an equivalence 

Topz(X, G [ T ] )  - 3 
of categories (defined by f - f* (T) ) .  Specifically, 5[T]  is the (internal) 
functor category Gso, where So is a category object in G which may be 

interpreted us the category of finite sets with So A 5 interpreted as the 
full inclusion. 

In particular, the category of points of G [ T ]  is equivalent to 5, SO that 
if we accept Grothendieck’s dictum that a topos is a generalized space, 
Q[T] is the space of all sets, with a non-trivial topology! Indeed, if x is a 
point of .X and if X f, G[T] ,  then the composite G * X f, G [ T ]  
is a point of G [ T ] ,  i.e., a set. The topology being non-trivial signifies that 
x - f ( x )  is continuous iff f is a sheaf on the ‘space’ S, i.e., corresponds 
to an object of X. The last sentence is inaccurate in two respects: X need 
not have enough points, and more profoundly, G [ T ]  does not have 
enough ‘open sets’, so that to specify the ‘topology’ on the  space of sets 
we have to consider all the ‘open sets with multiplicity’ = all the sheaves, 
which correspond to all the functors So 4 5; for the just stated reason, 



148 F. WIL>LIAM LAWVERE 

continuity off is not a ‘property’ of the point-mapping but is an additional 
structure consisting of the specification of the (generalized open set, i.e., 
object in .T) inverse image f*(E) of every such generalized open set E 
(this situation may be compared with current ideas in proof theory 
whereby properties are replaced by specified structures which ‘prove’ the 
properties). Actually, the theorem itself suggests that Grothendieck’s 
dictum should be turned backward: a topos W is the ‘algebra of continuous 
(set-valued) functions’ on a generalized space, not the generalized space 
itself. Naturally, the ‘algebras’ of variable sets are more profound than 
algebras of variable quantities, in the sense that their morphisms have two 
aspects f a ,  f’ going in both the geometrical and algebraic directions; 
considering that the basic direction is that o f f+  is essential in allowing the 
use of ideas from geometric experience in dealing with concepts whose 
relation to ordinary space is quite complicated, but f *  is usually more 
directly connected with the calculations which, rather than contemplation 
of pictures, are the main concern of mathematics, even of geometry. The 
foregoing sentence is a conceptual justification of the convention that the 
morphisms in Topr(.?, Ir)) are natural transformations f ”  + g* rather than 
natural transformations f. + g - ;  formal justification is given by the above 
theorem and its generalizations which follow, for with the opposite 
convention all these theorems would contain unnecessary dualizations. 
(Speculatively, i t  may become necessary to consider still more general 
‘generalized spaces’ which are not determined by a single topos of 
variable sets, just as in  algebraic geometry one considers non-affine 
spaces not determined by a single ring of variable quantities; this would 
lead to a large 2-dimensional ‘topos’ containing Topr as a full subcategory 
with S”. playing the role of the ‘affine line’.) 

The above is a case of the following theorem (one generalization of 
which, to arbitrary functor categories GC”’, is given by Diaconescu [ 5 ] ;  
however, the more interesting generalization for us here will be to 
consider ‘larger’ categories C with more structure and correspondingly 
‘smaller’ topoi of sheaves on C rather than all presheaves). 

Theorem 7 .  Let C be u category object in u topos G such that C has finite 
(inverse) limits. For uny topos .T over S, let Alga(C,X) denote the 
category of 2-smooth  left-exuct functors C -+ X. Then there is an 
equivulence of categories 

Top,(.Z3 S‘”’’) = Alg,(C, 3).  
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(Here, since X is a topos equipped with a map 3 4 5 ,  the problem 
of explaining ‘(5-smooth’ can be side-stepped by defining AlgG(C, X) as 
being (the part consisting of those functors preserving finite limits) in the 
internal (to X!) pre-sheaf category X p * c O .  But for a general theory of large 
categories X over a base topos G ,  we would have to consider as given 
categories Z s  of smoothly S-indexed families of objects of .X (which here 
can be defined as X s  = X / p * ( S ) )  and then we would see that a smooth 
functor C + X really involves a family of functors S ( S ,  C )  3 X” 
compatible with change of S, for at least an adequate family of objects S 
of G ;  S = 1 alone will not be adequate unless G or C is very special.) 

The interpretation of the above theorem is as follows: C is a many- 
sorted partial equational (finitary) theory (universal Horn theory), and 
AlgG(C, 3)  is the category of models of C in 3; in particular, Alga(C, 5) is 
the category of models of C in Q. The pre-sheaf topos SC”” may be 
considered as the set theory obtained by adjoining an indeterminate 
model of C to the set theory 6, or as the (algebra of continuously variable 
‘sets’ over the) generalized space whose points are all the (5) models of 
C. For example, if V is the category of finite-dimensional (say rational) 
vector spaces in Q, then a topos morphism 

x - 6’ 

over G may be considered either as a sheaf of vector spaces over the 
‘space’ X ,  as a vector space object in the topos X, or as a map assigning 
vector spaces (in G)  to points of X in a continuous manner. Here we have 
used V o p =  V; starting from an algebraic standpoint it may be more 
natural to start with a category A = Cop having finite colimits. For 
example, if A is the category of all finitely presented commutative rings in 
G, then G” is the ‘space of all rings”. Top,(X, G ” )  = Ann(X), and the 
category Top Anna of all ringed topoi over G may be considered as the 
‘2-dimensional comma category’ Top//GA whose morphisms are all the 
(non-commutative) triangles 

f 
X - 9  

Y + 7  4.” 

v” 

In calling G A  the ‘space of all rings’ we are thinking of its points;  if we think of its 
sheaves (= objects), it might also be called the ‘ring of all spaces’-i.e., a topos containing a 
line R and all Cartesian products, disjoint sums, equationally defined subspaces, quotients, 
etc. of this ‘space’. 
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of continuous maps equipped with a morphism cp between continuous 
maps. Other natural choices for C are the theories of categories, closed 
categories (which seem especially interesting here as a generalization of 
commutative ring), pretopoi, topoi, all in the sense of structured objects 
in topoi .t' over a topos S with natural-numbers object. 

However, partial equational (universal Horn) theories are not general 
enough, even for algebraic geometry where locaf rings play a dominating 
role. If A is the category of finitely presented rings then in C = A"P C G" 
the indeterminate ring R corresponds to the ring % [ t ]  in A with one 
indeterminate element, and the subobject U of R representing the 
invertible elements corresponds to the ring % [ t ,  tC'] in A. The condition 
for a ring object R in a topos X to be local is that for any pair f ,  g of its 
elements 

[ f  E U ]  v [ g  E U ] G ~ U  3 b  [ a  . f + b ' g  E U ] ,  

i.e., an isomorphism of two subobjects of R x R in X. But since these two 
subobjects are not equationally defined, they do not exist as subobjects of 
R in C ; thus we enlarge C to a pretopos then adjoin the above condition to 
obtain another pretopos E. (I do not know a simple direct algebraic 
description of E.) Then we consider a topos 3 which may be defined as the 
largest subcategory of SE"' which contains the (Yoneda representation of) 
E and for which E -+ ,3 preserves finite coproducts and epimorphisms. 8 
may also be described as the topos of precanonical sheaves on the 
pretopos E [ I ,  Vol. IT, 061. Then there is an equivalence of categories 

Top,(X, 3) = Ann loc(X), 

where the right-hand side is the category of all local rings in  X and all ring 
homomorphisms between them, i.e., the category Pretops(E, X) of G -  
smooth functors preserving the pretopos structure; I do not know if the 
local rings and local ring homomorphism in topos X can be classified in a 
similar way by a single topos [9]. 

THEOREM 8 (Re yes). For any many -sorted intuitionistic first -order theory 
E in which only the connectiues =, A ,  v, 3 occur in the language although 
entailment may be used in the axioms, let X be the topos of precanonical 
sheaves on the pretopos generated by the formulas. Then for any topos 3 
over sets 5, 
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where morphisms of models are just natural transformations between 
functors preserving the pretopos structure. 

The above is the basic theorem of a kind of ‘geometric’ logic which 
dualizes and extends algebraic logic in the sense that those continuous 
maps X’ -+ T which correspond to relative interpretations E --j, E‘ of 
theories must at least preserve directed colimits. 

If a pretopos E happens to have V (and hence 3 ) (e.g. any topos) in the 
sense that for each X f\ Y in E the operation of pulling back subobjects 
of Y to subobjects of X has a right adjoint V,, then the ‘models’ in the 
above theorem are in general only premodels in the sense that they need 
not preserve V (of course if E is classical in the sense that every subobject 
of every object has a strictly complementary subobject, then all premodels 
are models). I believe the following version of a construction of Kripke can 
be proved by methods of Joyal. 

CONJECTURE 9. Let E be a pretopos with V and let P be a sufficiently big 
set of premodels of E in X considered as a full subcategory of Mod(E, X). 
Then the corresponding single premodel of E in X p  is actually a model. 
(This is possible because due to the action of the transition in P, we have the 
Kripke commutation relation for V, i.e., V in X p  is not preserved by 
evaluation at individual p E P.) 

On the other hand, the existence of sufficiently big sets of premodels 
cannot in general be affirmed, unless X satisfies the axiom of choice. To 
state Deligne’s theorem we first state the characterization of topoi which 
arise as precanonical sheaves on some small pretopos. (This will be our 
third smallness condition). The term ‘coherent’ denotes a non-linear 
version of the concept in linear algebra which arose from the fact that in 
complex function theory the ring of holomorphic functions is not Noeth- 
erian but still satisfies a useful finiteness condition. 

DEFINITION 10. A topos X over 6 is coherent iff its class of coherent 
objects is equivalent to a category object in 6, is closed with respect to 
finite limits, and generates E (over G). Here an object C is coherent iff it 
satisfies both the following conditions: 

(1) for any directed poset I in G and any system T, in S, 

T(C, limier - T i )  - lim,Er + a ( C ,  T i )  

in G, 
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(2) if C ,  + C, C2- C, where C,,  Cz satisfy (l), then also C ,  XCCZ 

satisfies ( I ) .  

THEOREM 1 1 (Deligne, see [ 1,  Vol. 11,961; a more categorical proof is due to 
Joyal). If 5 satisfies the axiom o f  choice and has a natural numberobject, 
then any topos S coherent over 5 has points. In fact there is K in G and a 
continuous map ZK +. r o v e r  5 whose inverse-image functor is faithful. 

In the same way that the above theorem is equivalent to the complete- 
ness theorem for first-order logic (in finitary languages) the following 
theorem is equivalent to a Boolean-valued completeness theorem for 
infinitary logic, $ince as Reyes and Barr[22] have affirmed, every Grothen- 
dieck topos Ir) is, for some a ,  the category of ‘a-precanonical’ sheaves on 
the ‘ a  -pretopos’ of its ‘a  -coherent’ objects (these notions being defined 
just as for the case a = w except that a-coproducts instead of finite 
coproducts and a -filtered colimits instead of colimits over directed sets, 
are considered). The theorem may be briefly stated: ‘Every Grothendieck 
top05 has enough Boolean-valued points’, since the topoi X mentioned are 
just those of the  form sh(B,5)  for some CBA in 5 (recall that the 
atomless CBA’5 are the obvious obstruction to the existence of ordinary 
c-valued points.) 

THEOREM 12 ( [ l ,  Vol. 111, for the case of G = abstract sets; the case stated 
should present no significant further difficulties). Let 5 be a topos with 
natural numbers object and satisfying the axiom of choice. Then for any 
topos 9 bounded over S there exists a topos .T over 5 which also satisfies 
the axiom of choice and a continuous map T + g  over 5 whose 
inverse-image functor is faithful. 

- 

The difficult part of this theorem is to show that there is such a ‘very 
dominant’ map g‘ + r) with ?I‘ generated by subobjects of 1 (relative to 
2)  since then known methods (e.g. [6]) for embedding Heyting algebras in 
Boolean algebras give easily an X as described with a very dominant 
.2‘ + >y)’. 1 do not know if the choice of .T -+ r )  can be made reasonably 
canonical (in the way that, as remarked above, the choice of the sheaf 
representation for ?I can be. Of course, if ?I happens to have a sufficient 
set K of ordinary points, we can take .7t‘ = ZIK (corresponding to the 
Boolean algebra of subsets of K ) .  

Recalling that [21] for a continuous map .? + g of topoi with faithful 
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inverse-image functor, is equivalent to the category of co-algebras for 
the induced comonad on X, we may contrast the sheaf representation of 
with this one by noting that there the motion is explained internally, 
whereas here it is analysed in terms of random motions conditioned 
externally by the comonad which we have discovered in the process of 
analysis. 

However, even when there are points, there are constructions for 
which using that information may lead to unnecessary complication, 
leaving it unclear how to generalize the construction to other topoi. For 
example the construction of the spectrum of a commutative ring using 
primes, Zariski sets of primes, localization at primes to get the stalks, then 
putting these together to obtain a sheaf of local rings is quite complicated, 
yet the end result can be obtained more directly without using such 
internal points, which moreover need not exist even for a base topos such 
as the space of all rings which has plenty of external points. The desired 
end result of the construction is uniquely determined by the following 
universal mapping property[9]; we are given a commutative ring A in a 
topos G and want to construct a topos Spec(A) over 2 containing a local 
ring object A #  which is an A-algebra, such that for any topos ,2: over 2 
with a local ring B in it which is an A-algebra there is a unique pair u, cp 

consisting of a continuous map X.Spec(A) over 5 and a local 

homomorphism A#-% B of A-algebras. Note that the problem of finding 
a local ring to which A maps universally is unreasonable if we remain 
within a fixed set theory G;  we have to allow spreading out the domain of 
variation of the set theory in order to hope to solve it. Joyal’s method of 
solving this problem is to consider another universal problem internal to 
(5 which can be solved and to show that the solution of the internal 
problem leads to a solution of the original global spectrum problem; this 
internal problem may be thought of as an idealization of a practical 
problem of the following kind: Suppose that through investigation we 
have sufficient knowledge of some variable quantities such as air pres- 
sure, distance to Rome, number of cattle, iron concentration, water 
velocity, etc. to know the relations between their sums, products, etc. 
which knowledge we regard as determining a commutative ring A. The 
problem is to draw a map of the domain of variation of these quantities 
showing the regions Df where each quantity f exists (Le., does not vanish) 
so that in particular we must determine all the inclusion relations between 
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these regions >o that we can picture how they overlap; if we consider the 
system of all finite unions of such regions, our problem is to determine a 
certain distributive lattice object L ( A )  in 5 and a morphism A 5 L ( A )  
satisfying the conditions 

n,= 1 ,  

= 0, A Q, 

D,+g L 13, v D&!, 

and no more in the sense that any morphism A A L to any distributive 
lattice object L which satisfies the three conditions will factor uniquely 
through D by means of a lattice homomorphism L ( A )  -+ L. If we 
consider the free v-semilattice Y<,,(A) generated by the 'set' A, the 
multiplication in A extends to an associative multiplication in !?-(A) 
distributive with respect to v ,  so we can define L ( A )  = P w ( A ) / =  as the 
quotient modulo the semiring congruence generated by the third condition 
above and the condition that the multiplication should be idempotent. 
Since this whole discussion has been untainted by the Greek notion of 
point, i t  applies equally well in any topos S (for example we may imagine 
that the sets of 2 and so in particular the quantities in A are already 
varying in the domain of time, and hence so is the geometric picture 
1,(,4)). Spec(A) can then be constructed as the precanonical (i.e., 
coverings are finite sups) G-valued sheaves on L ( A )  and A #  as the 
presheaf f - A[f '1. 

In the case where 3 is the category of abstract sets, the theorem of 
Deligne allows us to state a theorem of Hochster in the following form, 
which is presumably also true for any topos having a natural-numbers 
object and satisfying the axiom of choice. 

THEOREM 13 (Hochster). The topoi over G which are of the form Spec(A) 
for some commutatioe ring A in 2 are precisely those which are coherent 
and generated by subobjects of 1 (over  S). (These same topoi appear as the 
underlying topoi  of these schemes which m a y  be covered by a finite number 
of ufine opens ) .  

Coherent topoi which are not generated by subobjects of 1 (i.e., which 
are not of the form: sheaves on a coherent topological space4 also occur 

Boolean space, not necessdrily a finite one. 
' Contrary to what is stated on [ I ,  Vol. 11, expos6 6 ,  p. 11, a separated coherent space is just a 
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in algebraic geometry (and thus led to the creation of topos theory) for 
example the sheaf A #  of local rings on Spec(A) is classified by a 
continuous map Spec(A) -+ 3 where 3 is the Zeriski topos, and any 
algebraic group is determined by acontinuous map 3 + S" to the coherent 
topos GG of presheaves on the category G of finitely presented groups. 
Recalling the geometric logic of Joyal-Reyes discussed above, we could 
claim 

Algebraic Geometry = Geometric Logic 

since each can be transformed into the other on the basis of the fact that 
both are the study of continuous maps between coherent topoi. This claim 
metaphysically ignores the dominating aspect in algebraic geometry of 
calculations in linear algebra; on the other hand I have maintained 
elsewhere that logic should be regarded as including the formalism of 
closed categories (not only as a particular theory, but as an extended 
'pure' logic), whereas the form of the linear algebra calculations in 
geometry is that of (abelian and) closed categories. 
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