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INTRODUCTTION

by

F. William Lawvere

The program of investigating the connections between algebraic
geometry and "intuitionistic" logic under the guidance of the form
of objective dialectics known as category theory was discussed and
moved forward at a conference in January 1971 at Halifax, Nova
Scotia where seventy mathematicians representing several fields took
part. Some of the lectures delivered are reflected in the seven
articles in this volume and in the present introduction.

Our own hopes in the success of the above general program were
strengthened by initial progress in carrying out a more special program
which will be outlined in this introduction. This is the development
on the basis of elementary (first-order) axioms of a theory of "toposes"”
just good enough to be applicable not only to sheaf theory, algebraic
spaces, global spectrum, etc. as originally envisaged by Grothendieck,
Giraud, Verdier, and Hakim but also to Kripke semantics, abstract
proof theory, and the Cohen-Scott-Solovay method for obtaining
independence results in set theory. At Rome and Oberwolfach meetings
in Spring 1969 I had discussed this program and proposed a set of
axioms (essentially theorems 1 and 2 below) which were then shown
during my 1969 - 70 collaboration with Myles Tierney to be adéquate
for all the usual exactness properties of toposes as well as for the
construction of sheaf categories and the proof that they are again
toposes. That part of our joint'work dealing with the continuum
hypothesis is detailed in Tierney's article in this volume. We also
simplified the original axioms, a process which has been carried
further more recently by Chris Juul-Mikkelsen. The proof of the
exactness of the associated-sheaf functor has recently been simplified

by Peter Freyd, who has also made interesting contributions to the



relationship between right-exactness and number theory in a topos.
Dana Scott has pointed out that Dedekind-cut sense of "analysis in a
topos" reduces to his model for intuitionistic analysis in the
"classical" case of sheaves over a non-trivial topological space.

We now understand by a topos any category E which is cartesian
closed and has a subobject-representor. Thus a topos has a terminal
object 1 and cartesian product and exponential functors determined by

the adjointness relations

X — Y, x Y

1 2 X —> Y

X — ¥, ,X —> ¥, A x X > X

as well as a "truth-value" object { satisfying the adjointness
relation

X —> 0

2 r—> X
where ? >—> X refers to an arbitrary equivalence class of

monomorphisms into X (i.e. an arbitrary subobject of X). More

exactly of course the natural bijections indicated by horizontal lines

above are mediated by unities

J A 2
X —> X x X X—2-3 (A x X)
YlXYZ—H_)Yi Ax YP —£5 y

in the case of the cartesian closed structure, and by

true
1l

in the case of the subobject representor. To explain more precisely
the working of the latter, regard any morphism A -——5—49 X as an
element of X "defined over A" (this has its usual sense in the

case of algebraic geometry) and for any monomorphism S 0y x

say that



X € M iff there exists X such that A ---->_§S
_ }gn/m-
X =Xm X
Further, write trueAfor the composite (constant) morphism

A—> 1 ———EEEQ——é Q@ . Then the determining property of Q is
as follows: Given any "propositional function" X ——i—) Q there is

a monomorphism {X|¢} with codomain X such that for any A—E— x

x e {X|¢} iff x¢ = true,

and conversely every monomorphism with codomain X has a unique
"characteristic function" ¢ . (Anders Kock has shown that in fact

it suffices to assume the existence of YA

for the case Y = Q.)

Briefly we may say that the notion of topos summarizes in
objective categorical form the essence of "higher-order logic" (we will
explain below how the logical operators become morphisms in a topos)
with no axiom of extensionality. This amounts to a natural and useful
generalization of set theory to the consideration of "sets which
internally develop". In a basic example of algebraic geometry, the
development may be viewed as taking place along a parameter which
varies over "rings of definition”; in a basic example from intuition-
istic logic, the parameter 1is interpreted as varying over "stages
of knowledge". To illustrate we further describe an example and four
classes of examples.

The most "abstract" topos is the familiar category S of abstract
sets and mappings in which, so to speak, the development has been
frozen so that morphisms X ——> Y are entirely determined by what
they do to "global" or "external" elements of X , i.e. elements
1l ——— X defined over the terminal object 1. Here of course YA
is an abstract set which precisely indexes the morphisms A —> Y

and Q is a two-element abstract set. There being no development

going on in the objects of S , there is nothing to obstruct the



existence of choice functions, and indeed the axiom of choice in a
certain sense characterizes models of set theory among toposes. More
exactly, Radu Diaconescu has shown that any topos in which epimorphisms
split is also generated by the subobjects of 1 and has Q =1+ 1 (co-
product) and is hence (in view of the results discussed below) a
"Boolean-valued model for the elementary theory of the category of
sets" if it satisfies an axiom of infinity.

The first class of toposes to be studied as categories was the
class of E of the form E = all S-valued sheaves on some topological
space. In such an example our axioms are verified in terms of the

section functor I' as follows
X
r(u,Y") = Hom (X|U,Y|U)

for all sheaves X and Y and all open sets U , and

r{(u,Q) = Set of all open subsets of U

A related class of toposes are those of the form §£ where P
is a poset. Here an object X may be analyzed as a family of abstract
sets indexed by the elements of P and equipped with transition
mappings Xp —_— Xq for p < g , satisfying the conditions that
the transition mapping X —> X is the identity and that the

P P
diagram

of transition mappings commutes whenever p < g < r . A morphism
£
X ———2—9 Y is any family xp————2—9 Yp of mappings which commutes

with the transition mappings

Whenever p < q .

Such a category §£ is a topos, with



(Yx)p = set of all families fq as above, except defined

only for those q with p <q ,

and

Q_ = set of all those subsets S of P which
satisfy q € § =p < g and

gqesS and g < r =>r € S
with the transition mappings (Yx)é——————é (Yx)q and 95——————5 Qq
given by restricting. By considering

X = ZXS
pls_<_p

we see that any object X 1is the quotient of an X which "increases"
(in the sense that the transitions are monomorphisms) modulo an

equivalence relation Epc: Xp X ip which also increases; this shows
the relationship between toposes of the form §§ and the usual model
theory for "intuitionistic" logic - namely we need only take account
of "equality" in the latter to reduce it to the former. Note that
toposes of the form §£ share with toposes of sheaves on topological
spaces the property of having non-Boolean internal logic except in
the most trivial cases.

Even before sheaf theory or intuitionistic logic mathematicians
considered permutation representations of groups, and these give rise
also to a distinctive class of toposes. Slightly more generally, let

G be any Brandt groupoid and let §£ be the category of represent-

ations of G in abstract sets, with equivariant maps as morphisms.

Then
X X
(Y") =% p (all mappings)
P P —
for each identity p of G , with the obvious action £9 = g_lfg ’
and
Qp = two element set

with trivial action. In a sense which can be made precise, these are



the only toposes which can be defined over S in a way which preserves
so strictly the topos structure.

By the way of contrast let M be any monoid which is not a group
(and, for uniqueness of presentation, assume it has no non-identity
idempotents). Then in the topos g& of M-sets, M acting on itself
is a canonical generator and we have that

YX = set of all eguivariant maps M x X—> Y

Q

set of all left ideals of M
both with a natural action of M .
The three classes just described are of course subsumed under the

more general class of toposes having the form of a functor category
op
s&

where C is any small category. Now one of the important fea-
tures of the theory of toposes is that a great many constructions

can be relativised through replacing S by an arbitrary base topos

E , and the functor category construction is one of these. For one
thing, significance of the condition that a category C is "small” is
that its "set" of objects and "set" of morphisms have the nature of
objects in the base topos and that its domain, codomain and composit-
ion operations have the nature of morphisms in the base topos. For
another thing, we have from the topology of fiber bundles the idea
that a really internal "family" of object§ (for example the family of
values of a functor) indexed by an object Co is simply a morphism
X—> C, » and this idea is if anything even more sensible in a
topos. These two observations can be used to define the notion of
category C in E and to define the category of internal E-valued
functors on C fgr any category E with finite limits. A topos E
has finite limits, which we can prove by constructing either equalizers
or intersections of subobjects: if we denote by eY the characteristic
function of the diagonal monomorphism Y——> Y x Y , then for any

pair fl' f2 of morphisms X—————> Y, the composite



<flyf2> )
=5y x y—YX30
is the characteristic function of the equalizer (X|f; 6,f,} of £,

with f2 ; or if we denote by

QX Q ——— Q

<{true,true

the characteristic function of 1 > Q x @ , we can, given
two subobjects of X with characteristic functions ¢l and ¢2 ,
obtain their intersection as {X|¢l‘“¢2} .

The fact that the interpally—defined functor categories (including
the special case §/X) are again toposes, as well as the usual exact-

ness properties of toposes such as pullbacks are exact, pushouts of

monos are monos, etc. follow from
Theorem 1. For any morphism X——£—~9Y’ in a topos E, the functor
E/XE £* E/Y

obtained by puliing back along £ has a right adjoint g

(as well as the obvious left adjoint Zf which is just composition
with f). As special cases we have, in addition to the exponentiation

in E/Y  the partial-morphism representor

B= % I B
Q—> 1 true

for any object B of E (which satisfies

~

A———> B

A & ~ ? > B

or in other words is the right adjoint to the inclusion of E into

the category with the same objects but with arbitrary partially-defined

morphisms) as well as the operations

v
X 30 oax o—2— g

of universal quantification over X and implication which may



alternatively be defined as the characteristic maps of the name of
trueX and of the equalizer of conjunction with the first projection,
respectively. Other forms of universal quantification are, for any

X-———i—é Y, a right adjoint
QX £ 3 QY

with respect to the natural order of @ for the operation of com-

posing with £ , as well as for any X , an operation

A
qf Xy oX

of infinite intersection which forms the "multiplication" part of a
triple (dual standard construction, monad) whose functor part is

f«vvmggl and whose unit part is the singleton map

X ——> oF

{}x
(which is just the exponential adjoint of ex}
It was with use of universal quantification that Chris Juul-

Mikkelsen proved the following

Theorem 2. In a topos there exist a strict initial object 0 ,
union of any two subobjects of any object, disjoint sum of any two
objects, image factorization of any morphism into epi and mono,
equivalence relation generated by any pair X:::::Y' of morphisms,
and coequalizer of any such pair of morphisms.

It follows from theorems 1 and 2 that all epis are coequalizers

and that equivalence relations are universal-effective. Moreover the

image factorization gives use to various forms

E| 3 U X
e Slb S S I ) de X -

of existential quantification which satisfy appropriate formal

relations (rules of inference) but typically "mean actual existence

only locally".



There are at least two forms of the idea of a property holding
"locally" in a topos. One is intrinsic, and reflects the idea that
any epimorphism S ———>1 1is a covering of E: thus for example
a diagram in E is said to locally satisfy some property expressed
in the language of toposes if there exists S with S—> 1 epic
such that when the diagram is pulled back to E/S it has the
property in the sense of the topos E/S . The other notion is with
respect to a given 2—1—>Q which may be thought of as a modal
operator to be read "it is j-locally the case that .." and which
satisfies the axioms below which in particular mean that j is
equivalent to a Grothendieck topology on C in the case of a topos
of the form §£Pp . At the Rome and Overwolfach meetings I had
pointed out that the usual notion of a Grothendieck topology is
equivalent to a single such morphism Jj ; Tierney showed that the
appropriate axioms on Jj are simply that 3jj = j and Jj preserves
finite conjunctionsf A subobject X'>——> X with characteristic
function x——Jl—é 2 1is said to be j-dense if ¢ 1is j-locally true
i.e. if ¢ jJ = truex . The relationships between the two notions
of localness arise from the fact that in a subcategory Ej of E
called the category of j-sheaves, a morphism:is an epimorphism in the
sense of Ej iff its image in the sense of E 1is j-dense. By
definition, an object Y of E 1is a j-sheaf iff for every j-dense
monomorphism X' >»—— X , every morphism X'——> Y can be
uniquely extended to a morphism X —> Y . If Y is a
j-sheaf and X is any object of E , X is again a j-sheaf ; thus
the full subcategory Ej is cartesian closed. Moreover the image
Qj of j 1is a sheaf which is a subobject representor for Ej ;
thus the category of j-sheaves is again a topos. In sheaf theory

an important construction is the associated-~sheaf- functor, a left

adjoint to the inclusion functor Ejr———é E which is usually

* including the empty conjunction - true.
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constructed by a two-step infinite direct-limit procedure. In the
absence of (external) infinite direct limits in the axiomatic

setting, I found quite another two-step procedure to construct this
adjoint: Given X , consider first the image of the canonical map

X — ¥ ————9ij , then form the j-closure of the resulting sub-

object of the sheaf ij this closure is the associated sheaf
of X . It is easy to see that this associated-sheaf functor
preserves products; the important fact that it preserves all finite
inverse limite (i.e. that it is left exact) was proved by Tierney
using a calculus-of-fractions argument. More recently Freyd has
proved the exactness using the facts that every topos has enough
injectives, that every injective of Ej is injective in E , and

the following

Lemma A diagram

R
> <
'_l

—
2 E
of monomorphisms in a topos is an intersection iff for every injective
E , a pair of maps Ai——————é E has a common extension to X 1iff

it has a common restriction to A .

The inclusions gj)—————9 E constitute precisely the full and

faithful case of geometrical morphism F —> E between toposes,
which means any functor having an exact left adjoint. Another
("surjective") case of geometrical morphism is one for which the
adjoint reflects isomorphisms - these are determined by a left exact
cotriple (standard construction) on the domain F . Moreover every
geometrical morphism can be uniquely factored into two, the first of
which is "surjective" in the sense just described and the second of
which is full and faithful. This "image topos" construction applied

to a "sections" functor (with "stalks” adjoint)

BOP
S/X — s—
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arising from a topology basis B on a set X , gives the usual
sheaf category. The latter construction can be relativised, replacing
the category of sets by an arbitrary topos,

Carrying out logic, algebra, and analysis within a topos usually
requires the axiom of infinity, i.e. the existence of the free unary
algebra Ng@s on 1 generator. Chris Juul-Mikkelsen has shown in
detail that this is equivalent to the existence of free monoid objects,
and Peter Freyd has shown that Ng&s is characterized by being a
fixed point 1 + N = N and by being the least such in the sense
that s

N N ——— > 1 1is a coequalizer

id

Over a base topos S with N there are two important toposes
which should be investigated in more detail: One is the category A
of sheaves on the product space NN , which has a nice topology
basis; besides its importance for intuitionistic analysis, A has
the property that "analytic spaces” are determined by left exact
cotriples in it. The other is sort of proof-theoretic version of the
Dedekind-cut construction which yields a topos R(S) whose truth-
values are (in the S-sense) nonnegative real numbers (including <=,
and with the "reverse" ordering which is convenient for setting up
metric spaces as "strong categories”"); if Q denotes the poset of
non-negative rationals, R(S) is the subcategory of §9 consisting

of those X for which X _ = lim X_. Using Brian Day's
q & 'r

r>q
theory of convolution, one can extend the usual addition and
truncated subtraction of reals to get a (non-cartesian) closed
structure on the whole topos R(S) . It should be useful to work
out some aspects of differential topology, infinite-dimensional group
representations etc. in this setting i.e. "analysis in a topos"

making use of the interplay between the external view, to the effect
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that a topos is a generalized space, and the internal view, to the

effect that a topos is a relativized set theory.
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