Equality in hyperdoctrines and comprehension schema
as an adjoint functor

F. William Lawvere

0. The notion of hyperdoctrine was introduced (Adjeintness in Foundations,
to appear in Dialectica) in an initial study of systems of categories connected by
specific kinds of adjoints of a kind that arise in formal logic, proof theory, sheaf
theory, and group-representation theory. It appears that abstractstructures of this
kind are alse intimately refated to Goédel’s proof of the consistency of number
theory (Dialectica 1958) and to Liuchli’s complete semantics for intuitionistic
logic (to appear in Proceedings of the Buffalo Conference on Intuitionism and
Proof Theory), although the precise relationship Is yet to be worked out, Since then
the author has noticed that vet another “logical operation”, namely that which
assigns to every formula ¢ its “extension” {x: p(x)} is characterized by adjointness,
and that the “‘same” adjoint in a different hyperdoctrine leads to the notion of
fibered category (or in particular the covering groupoid of a permutation group).
The second part of this article is devoted to a preliminary discussion of this sort of
adjoint, which we call tentatively the Comprehension Schema. The first part of
the article concerns two kinds of identities which a hyperdoctrine may satisfy, and
which lead in particular to a more or less satisfactory theory of the attribute
“equality”. One of these kinds of identities is formally similar to, and reduces in
particular to, the Frobenius reciprocity formula for permutation representations
of groups. Actually our definition of “equality” is not satisfactory when these
identities do not hold, though from examples one surmises that a satisfactory
theory could be developed by introducing still more structure into the already
rather rich notion of hyperdoctrine.

We recall the basic ingredients of a hyperdoctrine: there is to be a category T
of “types”, whose morphisms are called “terms”, and which is assumed to be
cartesian closed. Tor each type X there is a cartesian closed category P(X) of
“attributes of type X, whose morphisms are called “deductions over X, and
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for every term f:X — Y there is a functor f+ () P(Y)-— P(X) called “sub-
stitution of fin ()" for which it is assumed that £~ (g @) =(fg) - pforg: ¥ — Z Z
a term and ¢ an attribute of type Z (or a deduction over Z). Actually we should in
principle only give natural isomorphisms f (g-( )= {(fg}-( ) and assume
that these are coherent, but actual equality holds in the examples which we consider
here. Finally there are given, for each term f:X — Y, two functors () Zf and
() TIf respectively left and right adjoint to substitution, called “existential, E
respectively universal, quantification along /7. By general properties of adjoints fi
i we have then canonical natural isomorphisms ‘
H (OF)Eg == ¢2(fg),  (ILNHTIg =~ oll(fp)
for any attribute ¢ of type X. b
- All the adjointness relations involved in a hyperdoctrine are supposed to involve g
given front and back adjunction maps, so that the theory of hyperdoctrines is a t]
purely equational calculus. Nevertheless, we shall mostly use only the hom-set n
| ‘bijections induced by the adjunction morphisms, and in fact we will indicate these . 1
bijections in the manner usually used for rules of inference. Thus the cartesian d
closed structure of T, for example, involves three adjoints: First there is the E I
P terminal object 1, right adjoint to T — 1, whose characteristic property is : E
f X—1(nT) ; 1
f s (in1) a
_([ where the horizontal line indicates the canonical bijection of the morphisms of § z‘
J the sort above the line with those of sort below the line, and the dot denotes the : |
| unique morphism of the category 1. Secondly there is the cartesian product, right ?
adjoint to the diagonal functor T — T > T, whose adjunction morphisms are the ?
diagonal X8:X — X x X and the projections (Y, Yy)m;: ¥y X Yy — ¥, and ‘
whose characteristic property is expressed by the bijection Z'
X—=Y, %X ¥, _
XY, XY, _ s
where the ordered pair below the line may be thought of as a morphism in (;
T x T. Finally, for each type A, we have the right adjoint to 4 x { ), called : d
exponentation by A, whose adjunction natural transformations 2, and ¢, can be 1 .
“deduced” from the basic bijection E N
X — Y - . b
AXX—>Y a
by setting ¥ = A x X and considering the identity term below the line, respectively 1
by setting X = Y-! and considering the identity term above the line. o P
In the cartesian closed category P(X)of attributes of type X, we call the terminal = )
object 1 y the “identically true attribute of type X (deductions over X with domain it
1, will sometimes be called “proofs over X), and we denote product and v
exponentation as conjunction and implication, respectively, Thus the “evaluation” : p
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HYPERDCCTRINES AND COMPREHEMNSION SCHEMA 3

'-_j.: patural transformation e could instead be called “modus ponens”, and the
~adjointness relations become bijections of deductions over X as follows.

PP Ay g (@=y)
N PP PPy APy
Finally the adjointness property for existential (and dually for universal) quanti-
fication along f: X — Y is expressed by the bijection

PEf —
e[y

. between deductions over ¥ above and deductions over X below for each attribute
* g of type X and attribute ¢ of type ¥. Here we have not bothered to give names to
* the adjunction transformations. This neglect, and our use of the “rule of inference”
“notation, indicates in particular that we are ignoring coherence questions; that is,
in our assertions below in which we assert the existence of a canonical natural
~deduction ¢, — g, we have not verified that there do not exist several such.
" Lambek, in the Proceedings of the Batelle Conference on Categorical Algebra and
 Homology Theory, has made a healthy start on the coherence problem by establishing
Cut-Elimination for certain categories closely related to cartesian closed categories.
~In the same place, Gray, by introducing the appropriate notion of 2-dimensional
“‘adjointness, has shown that all the features of a hyperdoctrine, including our
- comprehension schema, can be obtained by defining a type to be an arbitrary
. category and an attribute of type B to be any fibration over B.

- As pointed out in our Dialectica article, terms corresponding to all higher-type
primitive recursive functions can be guaranteed by assuming a left adjoint to the
forgetful functor T— T (the domain being the usual category whose objects are
endo-terms). However we have not here included this adjoint in our general

definition as it plays no role in this paper.

- We mention now some examples of hyperdoctrmes Given any theory (several

sorted, institutionistic or classical) formulated in the language of finite types,
define T to have as objects all type symbols 1, ¥y, ¥1, Vs, . .. (one V,; for each sort),

VX V, VI, (V, x VY= x V¥ . (ie all expressions obtained by
closing the V¥, with respect to product and exponentation) and as morphisms
suitable equivalence classes of (tuples of) terms from the theory. The adjunction
equations force certain identifications of terms, and additional identifications may
be forced by axioms of the theory if there are terms provided by the theory in
addition to those guaranteed by the requirement that T be cartesian closed (for

instance, in higher-order number theory, the recursmn—adjomt F of the preceding

paragraph exists, and the natural numbers | —s» 1F, the successormap, 1F-2»1F,
gtc. are such additional terms, while the distributive law is such an additional
identification). As objects in P(X) take all formulas of the theory whose free

; v_ariabies correspond to the type X. For deductions over X, one may take
. 'provable entailments (so that the category P(X) reduces to a preordered set) or one
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may take suitable “homotopy classes” of deductions in the usual sense. One can
write down an inductive definition of the “homotopy™ relation, but the author
does not understand well what results (some light is shed on this question by the
work of Liuchli and Lambek cited above). Thus, although such syntactically
presented hyperdoctrines are quite important, it is fortunate for the intuition that
there are also semantically-defined examples, as below.

There are two basic examples in which T = & the category of all (small) sets
and mappings. One has P(X) = 2% = the partially-ordered set of all propositional
functions defined on X; if we confuse propositional functions with the corre-
sponding subsets, we then must have that ¢, A ¢y = ¢ M @, and that Zf is the
directimage of g along f (understanding that substitution is defined by composition,
so that, under the confusion, f'- v is the inverse image by f of ¥). Bvery model of a

higher-order theory induces a morphism from the corresponding hyperdoctrine.

to this set-hyperdoctrine, and conversely. The other example has P(X) = &%, so
that an attribute @ of type X is any family x - ¢ of sets indexed by x € X and a

deduction ¢, > @, over X is any family x - ¢4 20y % gy of mappings. Thus
P(1) = & is the “category of truth-values” for this hyperdoctrine. The relations
X'(a:>t,u)=(x'1p)(“'“’, y(tpnf)ﬂ]_—_[xlp,

®f=v

Yy (gZf) = 3 =x- ¢ (disjoint sum)
ef=y
follow (from the definition of substitution as composition). By our general
definition of “proof over X™ it follows that the proofs (over 1) of x- ¢ for

1 = X are precisely the elements of the set x - ¢. Thus, this hyperdoctrine may be
viewed as a kind of set-theoretical surrogate of proof theory (honest proof theory
would presumably also yield a hyperdoctrine with nontrivial P(X), but a
syntactically-presented one). For example, by the above equations, a proof over

X of o= pis a function which, for each 1 2> X assigns to every proof that x - «
a corresponding proof that x - g, while a proof over ¥ of X fis a function assigning
to every I — ¥ an ordered pair consisting of an x such that xf — ¥y and a proof
that x has the attribute ¢.

The functor” — 2 taking the empty set to 0 and every other set to | induces a
functor fromthe “proof” hyperdoctrine on T = setstothe“propositional-function™
hyperdoctrine on T = sets which commutes with all the mentioned logical opera-
tions. The fact that it commutes with universal quantification is equivalent to the
axiom of choice, or in the language of proofs, to a strong form of w-completeness.

We will consider three examples in which types are small categories and terms
are all functors between them. Here of course exponentiation of types must be the
usual functor-category construction. One has P(B) = 28 = the category of all
functors from B into the arrow category ~ the Brouwerian lattice of all sets ¢ of

objects of B with the property that if B L s BinBandBe @ then B' € p; we leave
as an exercise the computation of implication and quantification. The second
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: :example has P(B} = ®. Hence one has

« =1 B v nat (H? x a, p) = FPHE A o, y),
p2f: C-'W»ilm [(f.C) »B2s ]

’. for BZ> C a functor and a, @, 9:B— &, The third example also has P(B) =
7", but we restrict the category T of types to consist only of those B which are
“groupoids i.e. categories in which all morphisms are isomorphisms. T is still
scartesian closed since in fact BA is a groupoid for any category A if Bis. If B and C
“ have one object (i.e. are groups) then P(B) is the category of all permutation
-tepresentations of B and ¢Xf is the so-called induced representation of C. (Actually,
~there are two induced representations, the other being oIIf, calculated roughly as
the fixed point set of ¢ rather than the orbit set of ¢ x C. If fis of finite index
-the analogous constructions for /inear representations yield isomorphic results,
“which is perhaps why there seems to be no established name for “universal
- quaniification” in representation theory )

Since we have not taken recursion as part of the definition, hyperdoctrmes are

»also obtained if in the last five examples we replace small set, category, functor, etc.
by finite set, category, functor.

Finally we remark that although our discussion below of comprehension

“hinges on the operation X, there is at least one structure, namely with types —

- Kelly spaces and attributes = set-valued sheaves in which all features of hyper-
- doctrines except X exist (f () is only exact, not continuous in general) but in
- which there is clearly a kind of “extension”, namely the espace etalé.

1. We define, for cach type X, an attribute of type X X X as follows
O = 1x5(X0).

~ The adjunction then provides a canonical deduction 15 — (X3) - @ x which we
_interpret to mean that “reflexivity” holds for “equality” so defined. We wish to
- investigate what other expected properties of equality hold, and more generally to
study the interaction of existential quantification of attributes and cartesian
- products of types.

There are other expected properties of equality which we have not investigated;
for example, considering the projections p, m,, my, and the evaluation adfunction
€in

XX Y¥Xx YX_ 7, yXy yx

Xx¥¥—" sy

one might expect ® yx = ((7,€)8 3 (m,€))lp to hold. The intuitive interpretation of
this equation, f; = f; <= Vx[x/; = xf;] does not quite reflect it adequately, for it
does not necessarily mean that 1 is a generator for T; for example, the equation
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holds in the hyperdoctrine derived from a higher-order theory, even though there
may be no morphisms x:1 — X in T. However for what we are able to prove in
this paper neither exponentiation of types nor universal quantification of attributes
plays any role. Thus we only assume that we work in an arbitrary ecd (elementary
existential doctrire, defined like a hyperdoctrine except that ¥~ and @Ilf are not
necessarily assumed to exist), :

Reasonable relationships in an eed between products and equality as we have
defined it turn partly on implication being strictly preserved by substitution.

PROPOSITION (SUBSTITUTIVITY OF EQUALITY). In any eed in which, for every
term f1 X — Y and any two attributes a, y of type Y, the canonical deduction

Jle=sp—=fa=fyp

over X is an isomorphism, one also has, for any attribute @ of type X, a canonical
deduction

Oy > =m0
over X X X,

Proor.  The identity deduction ¢ — ¢ yields a canonical

ly— =0 =(0@n)p= (dn) <=0 (m  @p=>my ¢)

which by the adjointness of existential quantification along the diagonal used to
define equality yields the conclusion: Thus in fact we only used the assumption
for the case f == 4.

DEFINITION-THEOREM.  In any eed, the following are equivalent:

(1) Frobenius Reciprocity holds.

(2) Foramy f:X— Y, a, ypin P(Y) f- (a=9) —>fa=f

(3) Foranpf:X — Y, p e P(X), a e P(Y) ((f* ) A 9)5f > o A (@2f).
Proor. The second condition means that the diagram of functors

P()ZL s poy)
) )

PO G 7@

commutes up to canonical natural equivalence. Hence replacing each functor by
its left adjoint also yields a diagram which commutes up to canonical natural

equivalence:

P(Y} apl )

P(Y)
[ ( )&r

P(X) (realnl JP(X)

R

e s M e S e
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.:_Bl.lt the latter is just the third condition. Conversely if the third condition holds, we
‘can replace the functors in the latter diagram by their right adjoints, yielding the

sacond condition.
5Tt is clear that Frobenius Reciprocity holds in both the 2-valued and set-valued
:hyperdoctrines with sets as fypes. However it does not hold in the set-valued hyper-

‘doctrines with small categories as types. We provide a

COUNTEREXAMPLE. Let f:1 2 be | and consider «, %:2 — & represented as
“AZ>B, U s Ving. Theningeneral /'« (a0 =) — f o= [ pis not aniso-
‘morphism in &,

2 Proor, f-{ is just the value of { at 1 for any { .92 We do have

_ (a= )y = U4 = ag=> 9y

“hut, since H = 1,,

(& > ) = FXa, p) — UL x VB
V4

while
a3y = VE.

° Nevertheless, group theory is simpler than category theory.

PROPOSITION.  In the groupoid-permutation hyperdoctrine, Frobenius Reciprocity
holds.

ProoF, We need only show that substitution preserves implication. But in
- fact we have for any groupoid C and object ¢ € C and any two functors a, p:C—
© that
FEHC X a, ) —> (Cp)c

defined by evaluating a natural transformation at the identity in (C)H® = C(C, C),
is a bijection. The inverse sends any mapping: g:Ca — Cy into the natural trans-
formation g for which

Dg:u, xy — x(uta)g (uy)

for any C > D in DHY and x € De. This actually shows that for 1 “sc,
C-( ) —F' =% preserves implication, that implication is defined
objectwise. (C 4> (Cy)'€® becomes a functor by means of u ww> (uy)»"'9),
Thus for any /: B — C the sets involved in an implication-representation are pre-
served, and it is clear that the action is also preserved.

In order to prove the theorems we are aiming at in this section, we need to
consider another condition, which first came to the writer’s attention in un-
published work of Jon Beck on Descent Theory but which was surely considered
earlier in topology.
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DEerINITION.  An eed satisfies the Beck condition iff for every diagram
y—- s x
! ' £

Y—y—> Y’

of types and terms which is a meef (pullback, fibered product} diagram and for any.

attribute y of type Y, the canonical deduction {f* )2ix — f' - (2ip) (induced by
the identity deduction on pXy) is an isomorphism. (We should require the same
for Il if it exists.) Since we have not assumed that T has meets in general, we are led
to ask .

QUESTION.  What is the form of the diagrams which must be meet diagrams in
any category with products? Only two forms enter into our theorems; we do not
know whether there are essentially different forms. '

PROPOSITION.  For any morphism (term) f 1 X — Y

X—-—><X’f> AxY

(a) 4 XY

Yoo Y x Y
¥é

is a meet diagram.
Proor. . Clear.

Case (a) of the Beck condition enables us to settle the following, which may
have puzzled some readers. Our notion of quantification along an arbitrary term
seems a considerable generalization of the usual quantification with respect to a
variable x, which corresponds to the case when the term f quantified along is a
projection w1 X X ¥ — Y. The greater generality was used in defining equality,
since there we quantified along a diagonal term, which is not reducible to quanti-
fication along a projection. But perhaps that is the only essential case gained by
the generalization: that is, perhaps the general case of gZf can be expressed in
terms of @, and ( )}Zmp. In fact, that is tfrue in the basic set-propositional
function hyperdoctrine where y- (pZf) =1 iff Ix[xf =y Ax- ¢ =1]. More
generally, this relation (suitably translated into our variable-free language) holds
in many eeds, as asserted below. First we introduce a slight abbreviation of
notation: if f;: X — ¥, i = 1, 2, denote by f,8f, = (f1, /o) - Oy the attribute of
type X obtained by substituting (f;. f5): X — ¥ X Y into the equality attribute
of type ¥ X Y. Then

THEOREM. In any eed in which Frobenius Reciprocity and case (a) of the Beck
condition holds,

GEf > (mx - ¢ A (7 fOmy))Dary.

g

S
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PrOOF, We show first that Frobenius Reciprocity implies
PEf —> (mx - @ A (LX(X, ) Ery.

3f = PEUX, fymy) o (gEX, £)Emy

5o we are reduced fo showing that

. Indeed,

PR, f) Sy @ A (LB, 1),

* which is equivalent to

(X L) (e @) A LOSE ) = my - p A (LxS (X )3

:'_: but the latter follows from our statement of Frobenius Reciprocity by making the
. substitutions a wws gy @, @ 2w Ly, faws (X, ).

_ To complete the proof we show that Beck’s condition applied to diagrams of
© form (a) yields a canonical isomorphism 1 xZ(X, f) = mx [y (note that both
. of the expressions intuitively express the attribute of type X x Y which corre-
. sponds to the graph of f). In fact Beck (a) is explicitly (f- ¢¥)Z(X, ) —>

(f X Y)- (¢5(Y0d)); noting that f X ¥ = (mxf, my) and that f+ 1y s 1y, the
stated isomorphism follows by setting ¢ = 1y and using our definition of equality.

: PrROPOSITION. For gny fype A and term X — Y, the following is a meet
. diagram -
Axx=L s 4xy

(b)

X———7

Proor. Special case of the following, whose proof is clear.

ProrosITION. * For any pair of terms fi:X;— Y, i =1, 2 the following is a
meet diagram

X1Xry

Xy %X X Xy x ¥,

© F1XXa ' lnxm
Y, X Xy — ¥, X Y,
* P T 2

Our other theorem concerning the interaction of products and quantifications
will have a corollary concerning equality of vectors, and will be based on Beck’s
condition applied to diagrams of form (b). The theorem itself states in effect that,
though conjunction and existential quantification do not usually commute, they
do in a certain sense if the quantified variables are “independent” of each other




10 F. W. LAWVERE

inside the matrix. First, to make the notation more readable, we define the functor

POX) % P(Xa)-x P(Xy X X)

by 91 ® @, = m, * @1 A 7y @, the conjunction being of course the product in
P(X, X X). '

THEOREM. In an eed in which Frobenius Reciprocity and Beck (b) hold, one has
Sor any term 2 X — Y and type A, and for any atiributes ¢ and o of (ypes X and A

respectively, a canonical natural isomorphism (o @ )Z(A X f) "> 2 @ (pZf) of
attributes of type A X Y.

Proor. Let mx:4d x X —X, wp:4 X Y— Y denote the projections.
Then Beck (b) yields explicitly

(mx * PIB(A X [y * (¢Zf).
Thus

% @ (pZf) «— 1y @ A (mx * G)Z(A X f) :
<« (A Xf) (g ) Amx- 9)Z(4 X f) by Frobenius
= (x ® P4 X f)
since (4 X fymy =7y,

CoroLLARY. If g:B— A, f:X — Y are any two terms, f§ and ¢ attributes of
types B and X respectively, then under the hypotheses of the foregoing theorem, one
has a canonical natural isomorphism

(B © (g x ) — (bZg) ® (¢Zf).

Proor. Set « = fXg in the foregoing theorem, use also the symmetrized
form

(B ® PEg x B> () @ ¢
of the theorem and the fact that g X f = (g X B}A X f).
CoroLLARY. Under the hypotheses of the theorem, one has for any two fypes
Xy, X, an isomorphism
Oy xx, - (Ox, ® Ox)
where O is the term “middle four exchange isomorphism’ :
0:(X;, X X > X2 x XL,

Thus our culminating result states that two ordered pairs are equal iff their first
components are equal and their second components are equal.

Proor. Settingf = 1y, ¢ = lx,,g == Xi0,f = Xydin the previous corollary,
one obtains

(Ix, ® 1x)E(X10 X X8) > Ox, ® Oy .
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‘But 1y, ® 1x, = Lx yx,, since both conjuncts are m; - Ix, = lx,yx, Finally
' (X, X X)d = (%,0 X X.0)6-

but since 0 is an isomerphism
: 33 SN R 3

so the statement follows.

Even these meager theorems apparently do not hold in the docirines whose

“attributes are set-valued functors on small categories or groupoids. Counterexample
“(albeit to the hypotheses, not the conclusion, of the theorems). Let G be the

AZ—R

f"'l
“with only four morphisms and consider the two constant endofunctors 8 4, Op
of G. Then

O——»¢G
aﬂ'

G—>G

%4
s a meet diagram (where O is the empty category) and yet the Beck condition
applied to this diagram does not hold at any nonempty attribute .

Proor. Obviously ({0 — G) - p}2(O — G) = 0 and yet, since
05, ) I, 04 )

2 v

F (B, Ay,

we have that 0p - (pZ0,) =05 (P @) = 0% ¢ =05 ¢ #0.

This should not be taken as indicative of a lack of vitality of %, Be Cat asa
hyperdoctrine, or even of a lack of a satisfactory theory of equality for it. Rather,
it indicates that we have probably been too naive in defining equality in a manner
too closely suggested by the classical conception. Equality should be the “graph”
of the identity term. But present categorical conceptions indicate that, in the
context of set-valued attributes, the graph of a functor f/iB — C should be, not
132(B, {3, but rather the corresponding “profunctor”, a binary attribute of
mixed variance in P(B*® x C). Thus in particular “equality” should be the
functor homy (rather than the rather uninformative attribute ®5 in P(B < B),
given by our present definition). The term which would take the place of 6 in such
a more enlightened theory of equality would then be the forgetful functor

L

B-»B™ x B
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from the “twisted morphism category”, as follows from the “extensional” con-
siderations of the following section. Of course to abstract from this example would

require at least the addition of a functor T 225> T to the structure of an eed.
2. In any elementary existential doctrine we have a functor
(T, B) 1020, P(B)
for each type B, defined on objects by
E

P | 1z2p

B

The morphisms in the category (T, B) are of course arbitrary commutative tri-

angles

E——L—H‘E’

B

of terms, and it is easy to verify that the above definition can be canonically
extended to these morphisms to become a functor. For example, in the hyper-
doctrine with T = &, P(X) = 2%, -our functor

(&, B)y—28

assigns to any mapping p with codomain B the propositional function p defined
on B such that bp — 1 iff b € image (p) or in the example P(X) = &%, our functor
takes p: E — B into the family E,, b € B of sets in which E, is the fiber of p over b.
When the functor defined in the previous paragraph is equipped with a right
adjoint ‘
P(B)—~ (T, B)

we say that the eed satisfies the Comprehension Schema and denote the adjoint by
{Biy}

poaws | P

B
The new rule of inference is then expressed by the adjointness bijection

v@
5

1g2p —>
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between terms E {B:y} for which fp, = p and deductions 1,2p — y over B.
 We may call p,: {B:¢} — B the “extension” of v, justified by the fact that in the
hyperdoctrine 2%, X €&, p, reduces to the inclusion f, of that part of B whose
characteristic function is the propositional function p. For since j is then mono-
- morphic, there is for any p at most one f'such that f, = p; there is such an fiff
the image of p is contained in the part of B in question, which holds iff there is a
“deduction” 15Xp -» v in 28; hence p, & p, in (&, B).

Similarly the set-valued hyperdoctrine on T = & satisfies the comprehension
schema; for a family y of sets indexed by the elements of B, {B:y} = 3 cx b9,
the disjoint sum, with p,, the obvious projection. Thus in this case the Compre-
hension Schema is more nearly the Replacement Schema.

Given f;: X — Y, = |, 2 one would expect that the extension {X: f;8f,} of the
attribute of type X expressing that f; and f, are equal should in fact give the
equalizer in the category T of £, f,. This is true under certain conditions.

THEOREM. Suppose that in a given eed in which the Comprehension Schema
holds, we have further the following conditions for any two terms b1 E— Yt

(1) There is at most one proof 1y — hOh,
(i) If there is such a proof, then hy = k.

Then if f;: X — Y are any twe given terms and we set ¢ = f10f,, it follows that

i
X ip— X > Y
] 2
is an equalizer diagram.

Note. It would be too restrictive to replace (i} by the assumption that all
attributes have at most one proof. An equality statement tends to be a very special
sort of attribute; consider for example P(X) = %%, X €%, where (i) holds but
most attributes have many distinet proofs. Condition (ii) seems difficult to guarantee
by other kinds of assumptions.

Proor. Consider any “test” term E—— X as an object in (T, X). We must
show that there is at most one term E — {X:/,0f,} which when composed with
P, gives p, and that there is such a term iff pf; = pfs. By adjointness

E— {X:f10f.}
il vep

X
1,Zp — f10f,
> p - (9f)

setting h, = pf;.
The notation of “extension” surely belongs to logic, yet its own extension is
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considerably broader than the case traditionally considered by logicians, For
example :

THeorEM.  The hyperdoctrine with T = Cat, P(B) = &® satisfies the Com-
prehension Schema. Indeed,if ¢:B — & is any functor, its extension p,:{B: ¢} — B
is the op-fibration with discrete fibers associated to .

Proor. We need only show that the op-fibration @ — B in question, has the

required universal property. Recall that ¢ has as objects pairs (8, x) with | -—> Bg
in &, and as morphisms (B, x) — (B’, x") the morphisms B> B’ in B which
under the action p take x > x'. For any p:E B one has clearly that the
commuting diagrams

N

correspond to the elements of proj lim (p - ¢). But on the other hand for de-
ductions (i.e. natural transformations) one has

lg2p —> ¢

lg—=p-o
and the deductions of the sort below the line also correspond canonically to the

elements of proj lim (p - ¢) since the terminal object represents the inverse limit
functor on &*. Thus

lpXp— @

canonically for all E, p, and hence

@ 22 {B: g}

It is clear that if p:B — % is a functor whose domain B is a groupoid, then the
corresponding cofibered category ¢ is also a groupoid; it is in fact the “covering
groupoid” used by Higgins in his proof of the subgroup theorem and, in a measure-
theoretic context, by Mackey in his theory of virtual subgroups. Thus

CoroLrary.  The hyperdoctrine with T = groupoids, P(B) = 5 satisfies the
Comprehension Schema, with {B: ¢} = the covering groupoid of w for any per-
mutation representation p of the groupoid B.
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