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The theory of categories and functors (Eilenberg-MacLane [45], Freyd 
[60], Kan [58], MacLane [50]) extends to the various fields of mathe-
matics a methodological injunction which may be briefly phrased: "Look 
to the maps." That such a program can lead to interesting results in 
the field of model theory is partly borne out in the case of the study 
of "equational classes of algebras" by the results discussed below. 
There are at least four distinct levels in general algebra where maps 
are to be seen: (1) Homomorphisms between algebraic structures of a 
given equational type. This suggests the notion of "algebraic category." 
(2) "Equational" interpretations between algebraic theories; for example, 
the obvious interpretation of the theory of Lie algebras into that of 
associative algebras. (3) "Algebraic" functors between algebraic cate-
gories induced by the interpretations just mentioned, as well as adjoints 
(Kan [58]) to these. The notion of reduct provides a simple, but by no 
means trivial, class of examples of algebraic functors; previously known 
examples of adjoints to reducts include the constructions of tensor 
algebras and semi-group rings as well as the embedding of a distributive 
lattice in a Boolean algebra. (4) The semantical assignment of algebraic 
categories to algebraic theories. This assignment is a functor which, 
we discover, also has an adjoint when properly construed. The adjoint 
provides us with a useful tool for giving a new intrinsic characterization 
of algebraic categories and also for partially analyzing categories of 
models of more general theories. The results to be discussed appeared 
in an earlier form in the author's Columbia University doctoral disser-
tation (Lawvere [63]) written under the direction of Professor Eilenberg. 
For more recent related material see Isbell [a], Lawvere [a], and un-
published work of F . E. J . Linton. 

By an algebraic theory we mean a small category A whose objects are 
the natural numbers 0, 1, 2, . . . and in which each object n is the cate-
gorical direct product of the object 1 with itself n times. By an n-ary 
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operation of A is meant any map n -> 1 in A. Since n is a product, the 
projections π | η ) : η - ^ 1 , i = 0, 1, . . ., n-\ are always n-ary operations 
for each n in any algebraic theory, but in general there will be more. 
The maps n -> m in an algebraic theory A are in one-to-one corre-
spondence with the m-tuples of w-ary operations of A. Any ' 'presentation" 
of a concept of algebraic structure (e.g., groups, modules over a given 
ring, Jordan algebras, lattices, etc.), which involves a set of symbols 
denoting finitary operations together with a set of equations ( = identities) 
relating composite operations, determines an algebraic theory, and 
conversely every algebraic theory has such presentations. By a mapping 
between algebraic theories we will understand a functor that preserves 
products and takes 1 into 1. Algebraic theories and the mappings between 
them thus form a category 2Γ'. 

Each algebraic theory A determines a large category SfiA) whose 
class of objects is just the equational class (variety) of all algebras of 
type A, and whose maps are all (into) homomorphisms between these. 
An algebra of type A can be viewed as a product preserving functor 
A -> 6? from A to the category of sets ; a homomorphism of algebras 
is then just a natural transformation between such functors. If A is the 
algebraic theory whose only n-ary operations are projections (i.e., A is 
equivalent to the dual of the category of finite sets) then the category 
of algebras £f{A) is just the category Sf of sets. Every map / : A -> ß 
of algebraic theories determines in an obvious way a functor 
Sf tf> : £f{B) -> ^(A) which preserves underlying sets, i.e., for which 
UB = ^(f)UA, where UA:^{A)^y, C 7 ß : ^ ( ß ) - > ^ are the underlying 
set functors (notice the order in which we write composition.) 
We call any functor of the form «$̂ </> an algebraic functor, and we call 
any category of the form έ?{Α) an algebraic category. Any algebraic 
theory A is equivalent to the dual of the full category of finitely generated 
free algebras in its associated algebraic category. 

T h e o r e m . Every algebraic functor has an adjoint. 

For example, the category of rings (with unit) and that of monoids 
are algebraic, and the functor which assigns to each ring the monoid 
consisting of the same elements under multiplication alone is an algebraic 
functor. The adjoint to this functor is the well-known construction of 
the monoid ring. Other instances of this theorem include abelianization 
of groups, enveloping algebras of Lie algebras, and a generalized quaternion 
construction. The proof of the above theorem may be conveniently 
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divided into two steps. Given / : A - > ß in 3~, call £fA
} the category of 

all functors A -> Sf and natural transformations, the category of A-
prealgebras ; similarly SfB is the category of B-prealgebras. The induced 
functor &*B -> &*A has an adjoint which may be calculated by a direct 
limit procedure (see Lawvere [63, p . 39].) Secondly, the inclusion 
cfKB) _^ cfB 0£ a i g e b r a s j n t o prealgebras has an adjoint which may be 
calculated by considering, for a given prealgebra B -> ^ , the free algebra 
over the one-dimensional part reduced modulo the relations implied by 
the structure of the zero- and higher-dimensional parts. Note tha t for 
/ : A -^ B in 3"^ the natural transformation from the identity functor 
on y ( A ) to F£fW9 where F is the adjoint of ^</), need not be a mono-
morphism (for example, not every Jordan algebra is special —on the 
other hand every distributive lattice can be embedded in a Boolean ring) ; 
an important problem remaining is an intrinsic characterization of those 
/ in 2Γ for which the natural transformation in question is in fact a 
monomorphism. 

If we write A©= E7A, f(S = <SfU), we obtain a functor © which we call 
algebraic semantics ; the domain of @ is the dual ^~* of the category of 
algebraic theories, and we take as its codomain the category J f whose 
objects are functors U: 3£ -> £f with arbitrary domain category and 
with the category of sets as codomain, subject only to the restriction 
that for each natural number n, the class of all natural transformations 
Un -> U is small, where Un assigns to each X the nth Cartesian power 
of XU; a map T: U -> U' in J f is to be any functor T: SC -> T for 
which U = TU'. 

T h e o r e m . Algebraic semantics has an adjoint @: J f - > y * (which 

we call algebraic structure), and furthermore @@ is naturally equivalent 

to the identity functor on 2Γ*!. Explicitly, for any U in JT the n-ary operations 

of the algebraic theory U<B are the natural transformations Un -> U. 

Thus, any category SC equipped with an ' 'underlying set functor' ' 
U determines an algebraic category £Pwê) together with a functor: 
Φ: 3£->£fiuê) which preserves underlying sets, and given any other 
such functor Ψ: SC -> Sf{A\ there is a unique: / : A ->- Ü7© in &~ such 
that xP=0£f(fK Also the operations which define an algebraic category 
are in natural one-to-one correspondence with the natural operations 
on its underlying set functor. This second assertion of the theorem is a 
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consequence of Yoneda's lemma (Yoneda [54]) and the fact that 
UA

n = ïlom(An, ?) where An is a free A-algebra on n generators. Thus 
the functor © becomes most interesting when applied to "underlying set 
functors" on non-algebraic categories. For example, if we take for X 
the dual of the category of sets and for U the (contravariant) power 
set functor, the algebraic structure of U is the theory of Boolean algebras, 
and Φ assigns to each set the Boolean algebra of its subsets. If HE is the 
category of models for some given first-order theory T (maps in 2E are 
elementary embeddings) and if U is the "universe" functor, then the 
set of tt-ary operations of the algebraic theory Z7© is identified as the 
set of all formulas of T with at most VQ, . . ., vn free which provably 
express VQ as an everywhere well-defined function of v\, . . .,vni reduced 
modulo provable equivalence. If the theory T can be logically generated 
by formulas of this type, then the functor Φ may be thought of as an 
inclusion ; in general Φ measures semantically the departure of T from 
its nearest ''algebraic approximation", roughly speaking. 

The above theorem implies that a category 3C is equivalent to some 
algebraic category iff it has some underlying set functor U such that 
the particular functor Φ : 3C -> S?{A) described above is an equivalence 
where A= E7@. In that case we must actually have U = Hom(G, ?) where 
G is an object in SC such that βΦ is a free Λ-algebra on one generator. 
These observations enable us to completely characterize algebraic 
categories in the theorem below. We first define some terms. 

By an equalizer and coequalizer of a pair of maps 

/o 

in a category 3C, we mean respectively an inverse limit j : K ->- X and 
a direct limit p : Y -> K* of the above diagram in the sense of Kan [58]. 
A map p is called a regular epimap iff it is a coequalizer of some pair 
of maps. A category has finite limits iff it has an initial and a final object 
and if all possible binary products and coproducts ( = free products), 
as well as all possible equalizers and coequalizers, exist. A pair /o, /i 
as above is called a precongruence iff the corresponding / ; I - > 7 x 7 
is a monomorphism as well as reflexive, symmetric, and transitive in 
an obvious sense ; the pair is called a congruence iff / is the equalizer of 
the pair nop, nip, where m\ Y x Y -> Y are the projections, and p is the 
coequalizer of /o, / i . In a category with finite limits, every congruence 
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is a precongruence, while in any algebraic category the converse is 
also true. 

An object G i n a category 3C is abstractly finite iff the following three 
conditions hold : (a) for every object X, the class Hom(Cr, X) of maps 
G -> X is small (i.e., is a "se t") ; (b) for every set / , the /-fold coproduct 
IG esists; (c) any map G->IG factors through some T G, where 
Γ CI and / ' is finite. A map / : Y -> Z in 3C is G-surjective iff every map 
G ~>Z factors across /. An object G is a regular projective generator iff 
the 6r-surjective maps are precisely the regular epimaps. 

Finally, a functor Φ is said to be full and faithful iff for every pair 
X, Y of objects in its domain category, Φ induces a one-to-one corre-
spondence of the set of maps X -> Y onto the set of maps ΧΦ -> ΥΦ 
in the codomain category. 

T h e o r e m . Let 9C be a category with the following properties: (0)3? 
has finite limits ; (1) 9C has an abstractly finite regular projective generator G. 
Then there is an algebraic theory A and a functor Φ : 2£ -> 5f{A) which is 
full, faithful, and has an adjoint, and the free objects in SC coincide with 
those in £f{A) (i.e., (Ζ·(?)Φ = /·(ΟΦ]). Furthermore Φ is an equivalence 
iff (2) every precongruence in 9C is a congruence. Conditions 0, 1, 2 are 
necessary and sufficient that 2£ be equivalent to some algebraic category. 

For the proof, choose G as guaranteed by condition 1, set U = Hom(C?, ?) 
and let A=U(5. Then by the previous theorem, there is a functor 
Φ\2£ -> 6?{Α) with a universal mapping property. By using the properties 
of G, we can show that Φ is full and faithful and preserves coproducts 
of G with itself. Also (as was pointed out by Isbell [a]) every sub-A-
algebra of any ΧΦ is also of the form Χ'Φ. To construct the adjoint 
to Φ, consider a presentation of an V\-algebra F as a quotient of a free 
A-algebra; as the associated congruence relation actually comes from 
9C we may perform the "same" quotient operation in SC to obtain F , 
the value at Y of the adjoint of Φ. That ΥΦ ^ Y need not hold is shown 
by the following example: 3C = category of torsion-free abelian groups, 
G = rational integers, where Y is the result of reducing the arbitrary 
abelian group Y modulo its torsion subgroup. However, if condition 2 
also holds, then the adjoint of Φ is (up to natural equivalence) actually 
inverse to Φ. 

C o r o l l a r y . If 3? is an algebraic category and if Ή is any small category 
with finitely many objects, then the full category 9fë of functors *% -> 9C 
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and natural transformations thereof is itself equivalent to an algebraic 
category, provided either that 9C ^ Sf{A) where A has at least one nullary 
operation or that for any two objects C, C1 in *€, there exists a map C -> C1 

in if. 

In proving this corollary, we define the underlying set of a functor 
<€ -^-> 3C to be the product, indexed by the objects G in fâ, of the sets 
CFU, where U is a given underlying set functor for 3C. When fé7 has 
only one object, then ^ is a monoid and the corollary refers to the well-
known notion of a monoid acting by endomorphisms of an algebra to 
form a new type of algebra. 


